Adolescence is a critical neurodevelopmental period for both excitatory and inhibitory (E/I) neurotransmission and often witnesses the typical onsets of schizophrenia. One possibility is that disruptions in adolescent neurodevelopmental processes may produce schizophrenia-like behavioral and neurobiological abnormalities. We previously reported that subchronic treatment of adolescent animals with the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 induced cognitive deficits and reduced interneuron densities in rat medial prefrontal cortex, and these changes persisted one week after MK-801 exposure. However, it remains unclear how this treatment may affect E/I balance in hippocampus, which has long been associated with the pathophysiology of schizophrenia. Here, we examined hippocampal E/I biomarkers in adolescent rats treated with MK-801 (0.2 mg/kg, i.p., 14 days) and found increases in the ratio of the expression levels of vesicular glutamate transporter-1 (VGluT1) and vesicular gamma-aminobutyric acid (GABA) transporter (VGAT) 24 h and 7 days after MK-801 exposure. Interestingly, the increased VGluT1/VGAT ratio at the two time points was driven by upregulated VGluT1 expression and downregulated VGAT expression, respectively. The decrease in VGAT expression persisted 14 days after MK-801 exposure and recovered two weeks later. No alterations in hippocampal interneuron densities were observed. Behaviorally, the treatment decreased prepulse inhibition at 24 h but not 14 days, after MK-801 exposure. Taken together, these results demonstrate that subchronic NMDA receptor blockade during adolescence induces long-term, but not permanent, E/I imbalance in the rat hippocampus, which could be attributed to the dysregulation of glutamatergic transmission in the short term and of GABAergic transmission in the long term.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2019.172807 | DOI Listing |
J Pharmacol Sci
February 2025
Department of Physical Chemistry for Bioactive Molecules, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 985-1 Sanzo, Higashimura-cho, Fukuyama, Hiroshima, 729-0292, Japan.
The purpose of the present study is to investigate changes in the kynurenine pathway after intracerebral hemorrhage (ICH) and its effects on ICH-induced injury. The exposure of a primary rat microglial culture to thrombin increased the mRNA level of kynurenine 3-monooxygenase (KMO), and this increase was attenuated by a p38 MAPK inhibitor. Thrombin also increased the protein level of KMO.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
January 2025
Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada. Electronic address:
Our understanding of the implications of gestational Cannabis exposure (GCE) remains unclear as Cannabis use increases worldwide. Much of the existing knowledge of the effects of GCE has been gained from preclinical experiments using injections of isolated Δ-tetrahydrocannabinol (THC) at relatively high doses. Few investigations of the effects of GCE to smoke from the whole Cannabis flower have been conducted, despite this being the most common mode of human consumption.
View Article and Find Full Text PDFCognitive impairment associated with schizophrenia (CIAS) is considered a core symptom of the illness, yet effective treatments remain limited. Light plays an important role in regulating cognitive functions. However, the potential of light treatment (LT) to improve CIAS remains unknown.
View Article and Find Full Text PDFPharmacol Biochem Behav
January 2025
Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil. Electronic address:
Alcohol is widely consumed worldwide and its abuse can cause cognitive dysfunction, affecting memory and learning due to several neurophysiological changes. An imbalance in several neurotransmitters, including the cholinergic and glutamatergic systems, have been implicated in these effects. Zebrafish are sensitive to alcohol, respond to reward stimuli, and tolerate and exhibit withdrawal behaviors.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
November 2024
Schizophrenia, Merck & Co. Inc., United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!