Using INTERSPIA to Explore the Dynamics of Protein-Protein Interactions Among Multiple Species.

Curr Protoc Bioinformatics

Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea.

Published: December 2019

INTER-Species Protein Interaction Analysis (INTERSPIA) is a web application for identifying diverse patterns of protein-protein interactions (PPIs) in different species. Given a set of proteins of interest to the user, INTERSPIA first discovers additional proteins that are functionally associated with the input proteins as well as different or common patterns of PPIs among the proteins in multiple species through a server-side pipeline. Second, it visualizes the dynamics of PPIs in multiple species via an easy-to-use web interface. This article contains a basic protocol describing how to visualize diverse patterns of PPIs of input proteins in multiple species, and how to use them for functional analysis in the web interface. INTERSPIA is freely available at http://bioinfo.konkuk.ac.kr/INTERSPIA/. © 2019 by John Wiley & Sons, Inc. Basic Protocol: Running INTERSPIA using a list of input proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpbi.88DOI Listing

Publication Analysis

Top Keywords

multiple species
16
input proteins
12
protein-protein interactions
8
diverse patterns
8
patterns ppis
8
proteins multiple
8
web interface
8
basic protocol
8
proteins
6
interspia
5

Similar Publications

Cell-autonomous adaptation: an overlooked avenue of adaptation in human evolution.

Trends Genet

December 2024

Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel. Electronic address:

Adaptation to environmental conditions occurs over diverse evolutionary timescales. In multi-cellular organisms, adaptive traits are often studied in tissues/organs relevant to the environmental challenge. We argue for the importance of an underappreciated layer of evolutionary adaptation manifesting at the cellular level.

View Article and Find Full Text PDF

m6A methylation dynamically participates in the immune response against Vibrio anguillarum in half-smooth tongue sole (Cynoglossus semilaevis).

Fish Shellfish Immunol

December 2024

Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China. Electronic address:

N6-methyladenosine (m6A) is the most prevalent RNA modification and a multifaceted regulator capable of affecting various aspects of mRNA metabolism, thereby playing important roles in numerous physiological processes. However, it is still unknown whether, when, and to what extent m6A modulation are implicated in the immune response of an economically important aquaculture fish, half-smooth tongue sole (Cynoglossus semilaevis). Herein, we systematically profiled and characterized the m6A epitranscriptome and transcriptome in C.

View Article and Find Full Text PDF

Gegen Qinlian Decoction inhibits liver ferroptosis in type 2 diabetes mellitus models by targeting Nrf2.

J Ethnopharmacol

December 2024

Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, PR China, 230038; Institute of Surgery, Anhui Academy of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, PR China, 230038. Electronic address:

Ethnopharmacological Relevance: Type 2 diabetes mellitus (T2DM) is a metabolic disease that can lead to complications affecting multiple organs, including the liver. Gegen Qinlian Decoction (GQD) has demonstrated considerable efficacy in the management of T2DM and its complications in accordance with the tenets of modern Chinese medicine. However, the molecular mechanism by which GQD alleviates diabetic liver injury is unclear.

View Article and Find Full Text PDF

Enhancing toxicity prediction for natural products in herbal medicine and dietary supplements: Integrating (Q)STR models and in vitro assays.

Toxicol Appl Pharmacol

December 2024

Department of Predictive Toxicology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA. Electronic address:

New approach methods (NAMs) are required to predict human toxicity effectively, particularly due to limitations in conducting in vivo studies. While NAMs have been established for various industries, such as cosmetics, pesticides, and drugs, their applications in natural products (NPs) are lacking. NPs' complexity (multiple ingredients and structural differences from synthetic compounds) complicates NAM development.

View Article and Find Full Text PDF

Comprehensive site- and structure-specific profiling of N-glycosylation of edible bird's nest (EBN) proteome using label-free quantitative glycoproteomics.

Food Chem

December 2024

Chinese Academy of Inspection and Quarantine, Beijing 100176, People's Republic of China. Electronic address:

Glycoproteins, which are involved in numerous biological functions, are among the most critical functional ingredients in an edible bird's nest (EBN). To gain a comprehensive understanding of the glycoprotein species within EBN, a label-free, site-specific glycoproteomic approach was used to analyze their N-glycoproteins, N-glycopeptides, and N-glycans systematically. A total of 127 N-glycoproteins were identified in EBN, of which 72 were found in house-EBN and 63 in cave-EBN, yielding 4195 and 5649 glycopeptides, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!