Objective: Previous computational studies predict that Gaussian shaped waveforms use the least energy to activate nerves. The primary goal of this study was to examine the claimed potential of up to 60% energy savings with these waveforms over a range of phase widths (50- [Formula: see text]) in an animal model.

Methods: The common peroneal nerve of anaesthetized rats was stimulated via monopolar and bipolar electrodes with single stimuli. The isometric peak twitch force of the extensor digitorum longus muscle was recorded to indicate the extent of neural activation. The energy consumption, charge injection and maximum instantaneous power values required to reach 50% neural activation were compared between Gaussian pulses and standard rectangular stimuli.

Results: Energy savings in the 50- [Formula: see text] range of phase widths did not exceed 17% and were accompanied by significant increases in maximum instantaneous power of 110-200%. Charge efficiency was found to be increased over the whole range of tested phase widths with Gaussian compared to rectangular pulses and reached up to 55% at 1ms phase width.

Conclusion: These findings challenge the claims of up to 60% energy savings with Gaussian like stimulation waveforms. The moderate energy savings achieved with the novel waveform are accompanied with considerable increases in maximal instantaneous power. Larger power sources would therefore be required, and this opposes the trend for implant miniaturization.

Significance: This is the first study to comprehensively investigate stimulation efficiency of Gaussian waveforms. It sheds new light on the practical potential of such stimulation waveforms.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2019.2954004DOI Listing

Publication Analysis

Top Keywords

energy savings
16
phase widths
12
instantaneous power
12
stimulation efficiency
8
efficiency gaussian
8
gaussian waveforms
8
60% energy
8
range phase
8
50- [formula
8
[formula text]
8

Similar Publications

Load-Shifting Strategies for Cost-Effective Emission Reductions at Wastewater Facilities.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, California 94305, United States.

Significant hourly variation in the carbon intensity of electricity supplied to wastewater facilities introduces an opportunity to lower emissions by shifting the timing of their energy demand. This shift could be accomplished by storing wastewater, biogas from sludge digestion, or electricity from on-site biogas generation. However, the life cycle emissions and cost implications of these options are not clear.

View Article and Find Full Text PDF

Background: In the United States, complete abstinence persists as the standard for demonstrating recovery success from substance use disorders (SUDs), apart from alcohol use disorder (AUD). Although the FDA has recently indicated openness for non-abstinence outcomes as treatment targets, the traditional benchmark of complete abstinence for new medications to treat SUDs remains a hurdle and overshadows other non-abstinent outcomes desired by people with SUDs (e.g.

View Article and Find Full Text PDF

Advanced microgrid optimization using price-elastic demand response and greedy rat swarm optimization for economic and environmental efficiency.

Sci Rep

January 2025

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

In this paper, a comprehensive energy management framework for microgrids that incorporates price-based demand response programs (DRPs) and leverages an advanced optimization method-Greedy Rat Swarm Optimizer (GRSO) is proposed. The primary objective is to minimize the generation cost and environmental impact of microgrid systems by effectively scheduling distributed energy resources (DERs), including renewable energy sources (RES) such as solar and wind, alongside fossil-fuel-based generators. Four distinct demand response models-exponential, hyperbolic, logarithmic, and critical peak pricing (CPP)-are developed, each reflecting a different price elasticity of demand.

View Article and Find Full Text PDF

This paper aims to construct a green environmental protection system by advancing database energy-saving techniques and optimizing the energy-saving mechanism against the backdrop of blockchain integration. The protocol classification of wireless sensor networks is examined within the context of the rapid growth of information technology. The analysis draws upon the database storage and sharing model and recent research examples that connect blockchain and database technology.

View Article and Find Full Text PDF

Biomimetic Confined Assembly of Plasmonic CuS from Electronic Waste for Rapid Photothermal Disinfection.

ACS Nano

January 2025

State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Photothermal disinfection (PTD) offers promising potential for water purification due to its sustainable and broad-spectrum bactericidal properties, although it is hindered by slow charge separation in photosensitizers. Herein, we present a plasma-mediated PTD technique utilizing an efficient localized heating effect induced by incident light at specific wavelengths for rapid bacterial inactivation. A metallic CuS photosensitizer, derived from electronic waste through a biomimetic transmembrane confined-assembled strategy, facilitates collective and coherent oscillation of free electrons around Cu atoms in the near-infrared range.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!