: To investigate the protective effects of nerve growth factor (NGF) against steroid-induced cataract formation in dexamethasone (Dex)-treated human lens epithelial B-3 (HLE-B3) cells and the possible molecular mechanisms underlying this protection.: HLE-B3 cells were treated with Dex, and cell viability was assessed using the Cell Counting Kit-8 (CCK-8) assay. The levels of expression of NGF, fibronectin, α-smooth muscle actin (α-SMA), and E-cadherin mRNAs were measured by real-time quantitative polymerase chain reaction (qPCR), and the levels of NGF, fibronectin, α-SMA, E-cadherin, tropomyosin receptor kinase A (TrkA), and Akt proteins were measured by Western blot analysis. Gene expression profiles of growth factors in Dex-treated HLE-B3 cells were determined by PCR arrays. In addition, anterior capsule tissue was obtained during cataract surgery, and the specimens were also examined expressions of NGF.: NGF was expressed in HLE-B3 cells and also in lens epithelial cells of anterior lens capsules. Dex treatment of HLE-B3 cells increased their expression of epithelial-mesenchymal transition (EMT) markers and migration activity, while markedly downregulating the expression of NGF. NGF treatment significantly reduced the expression of α-SMA and fibronectin, as well as cell proliferation. The decreased phosphorylation of p38 MAPK and Akt induced by Dex treatment was significantly reversed by treatment with NGF.: NGF/TrkA may repress EMT by targeting the p38 MAPK and pAkt pathways in Dex-treated HLE-B3 cells. NGF may be a novel therapeutic target for patients with steroid-induced cataract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02713683.2019.1695844 | DOI Listing |
Discov Nano
January 2025
Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China.
Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
November 2024
Department of Ophthalmology, University-Town Hospital of Chongqing Medical University, 401331 Chongqing, China.
Background: The goal of this study was to investigate the effects of dexamethasone on human lens epithelial cells (HLECs) and the potential mechanisms.
Methods: HLECs (HLE-B3) were cultured to assess the effects of dexamethasone on cell size at different concentrations. Immunofluorescence staining was used to detect specific protein expression in HLE-B3 cells.
J Bioenerg Biomembr
December 2024
Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
Oxidative stress-induced lens epithelial cells (LECs) death plays a pivotal role in pathogenesis of age-related cataract (ARC), causing significant visual impairment. Apoptosis of porcine granulosa cells mediated by MMP2 is linked to DNA damage. The current study aimed to investigate the potential mechanism of MMP2 in DNA damage, apoptosis and senescence of lens epithelial cells caused by oxidative stress.
View Article and Find Full Text PDFInt J Biol Macromol
October 2024
Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, Hangzhou 310020, China. Electronic address:
Congenital cataracts, a prevalent cause of blindness in children, are associated with protein aggregation. γD-crystallin, essential for sustaining lens transparency, exists as a monomer and exhibits excellent structural stability. In our cohort, we identified a nonsense mutation (c.
View Article and Find Full Text PDFInt Ophthalmol
June 2024
Department of Medical Genetics, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
Purpose: Age-related cataract (ARC) is the most common cause of visual impairment and blindness in older adults. However, the role of CUL4B in the ARC remains unclear. Therefore, we investigated CUL4B expression and its effects on apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!