Recent discoveries about functional mechanisms of proteins in the TMEM16 family of phospholipid scramblases have illuminated the dual role of the membrane as both the substrate and a mechanistically responsive environment in the wide range of physiological processes and genetic disorders in which they are implicated. This is highlighted in the review of recent findings from our collaborative investigations of molecular mechanisms of TMEM16 scramblases that emerged from iterative functional, structural, and computational experimentation. In the context of this review, we present new MD simulations and trajectory analyses motivated by the fact that new structural information about the TMEM16 scramblases is emerging from cryo-EM determinations in lipid nanodiscs. Because the functional environment of these proteins in in vivo and in in vitro is closer to flat membranes, we studied comparatively the responses of the membrane to the TMEM16 proteins in flat membranes and nanodiscs. We find that bilayer shapes in the nanodiscs are very different from those observed in the flat membrane systems, but the function-related slanting of the membrane observed at the nhTMEM16 boundary with the protein is similar in the nanodiscs and in the flat bilayers. This changes, however, in the bilayer composed of longer-tail lipids, which is thicker near the phospholipid translocation pathway, which may reflect an enhanced tendency of the long tails to penetrate the pathway and create, as shown previously, a nonconductive environment. These findings support the correspondence between the mechanistic involvement of the lipid environment in the flat membranes, and the nanodiscs. © 2019 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7261202 | PMC |
http://dx.doi.org/10.1002/jcc.26105 | DOI Listing |
Water Res
December 2024
Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea; Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea; NanoRaman Analysis Corp., 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. Electronic address:
Nanoplastics (NPs) are growing concerns for health and the environment, being widely distributed across marine, freshwater, air, and biological systems. Analyzing NPs in real environmental samples requires pretreatment, which has traditionally been complex and often leads to underestimation in actual samples, creating a gap between real-world conditions and research findings. In this study, we propose using anodic aluminum oxide (AAO) membrane as a direct Raman substrate for particles on a filter, achieving complete recovery during separation and concentration while simplifying the pretreatment stages.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel. Electronic address:
Chlorhexidine (CHX) is a gold standard therapeutic agent against clinical oral pathogens. However, its oral use is limited due to unpleasant taste, alteration in taste buds, staining of teeth and mucous membranes. Therefore, CHX-loaded PLGA microneedles (MNs) were fabricated for local and controlled release in the oral cavity, using a casting mold method.
View Article and Find Full Text PDFNanoscale
December 2024
University of Warsaw, Faculty of Physics, Pasteura 5, 02-093 Warsaw, Poland.
Raman spectroscopy is a powerful analytical method widely used in many fields of science and applications. However, one of the inherent issues of this method is a low signal-to-noise ratio for ultrathin and two-dimensional (2D) materials. To overcome this problem, techniques like surface-enhanced Raman spectroscopy (SERS) that rely on nanometer scale metallic particles are commonly employed.
View Article and Find Full Text PDFBiotechnol J
December 2024
Department of Biomedical Engineering, Tulane University, New Orleans, USA.
Microphysiological systems (MPS) containing perfusable vascular beds unlock the ability to model tissue-scale elements of vascular physiology and disease in vitro. Access to inexpensive stereolithography (SLA) 3D printers now enables benchtop fabrication of polydimethylsiloxane (PDMS) organ chips, eliminating the need for cleanroom access and microfabrication expertise, and can facilitate broader adoption of MPS approaches in preclinical research. Rapid prototyping of organ chip mold designs accelerates the processes of design, testing, and iteration, but geometric distortion and surface roughness of SLA resin prints can impede the development of standardizable manufacturing workflows.
View Article and Find Full Text PDFNature
December 2024
Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China.
Diamond is an exceptional material with great potential across various fields owing to its interesting properties. However, despite extensive efforts over the past decades, producing large quantities of desired ultrathin diamond membranes for widespread use remains challenging. Here we demonstrate that edge-exposed exfoliation using sticky tape is a simple, scalable and reliable method for producing ultrathin and transferable polycrystalline diamond membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!