The antioxidant activity of glutathione in its reduced (GSH) and oxidized (GSSG) forms against metal-mediated oxidative DNA damage was studied by monitoring production of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) from calf-thymus DNA. GSH and GSSG were combined with Fe(ii) and Cu(ii) before and after addition of DNA to investigate the role of metal coordination in the antioxidant mechanism. The antioxidant behavior of GSH and GSSG was also compared to the known radical scavenger DMSO. GSH and GSSG lower oxidative DNA damage for Fe(ii) and Cu(ii) reactions. GSH only exhibited appreciable antioxidant behavior when combined with Fe(ii) prior to adding DNA, and GSH and GSSG were slightly more effective against Cu(ii)-mediated damage when combined with Cu(ii) prior to adding DNA. Raman spectra of GSH in the presence of Cu(ii) indicate that Cu(ii) oxidizes GSH and raises the possibility that the antioxidant activity of GSH against Cu(ii) reactions may be attributed to its ability to form GSSG. No evidence of GSH oxidation in the presence of Fe(ii) was observed. The fluorescent probe dichlorofluorescein diacetate (DCF-DA) shows that the presence of GSH (for Cu(ii) reactions) and GSSG (for Fe(ii) and Cu(ii) reactions) lowers levels of reactive oxygen species (ROS) in bulk solution. Overall, the results suggest that the mechanism of antioxidant activity for GSH and GSSG against Fe(ii) and Cu(ii)-mediated oxidative damage involves metal coordination, and isothermal titration calorimetry (ITC) studies of the Cu(ii)-GSSG system show an enthalpically favored complexation reaction with an apparent 1 : 1 stoichiometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9mt00231f | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China.
The designability and high reactivity of nanotechnology provide strategies for antitumor therapy by regulating the redox state in tumor cells. Here, we synthesize a kind of vanadium dioxide nanoparticle encapsulated in bovine serum albumin and containing disulfide bonds (VSB NPs) for photothermal-enhanced ferroptosis and pyroptosis effects. Mechanism studies show that disulfide bonds can effectively consume overexpressed glutathione (GSH) in the tumor microenvironment, leading to a decrease in glutathione peroxidase 4 (GPX4) activity.
View Article and Find Full Text PDFTransplant Cell Ther
January 2025
Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, Cincinnati, OH.
Background: HSCT conditioning regimens cause massive lysis of hematopoietic cells with release of toxic intracellular molecules into the circulation.
Objectives: To describe the response to oxidative stress early after hemopoietic stem cell transplantation (HSCT) and assess the association of early oxidative stress with later transplant outcomes.
Study Design: Key components of in the body's physiological response to oxidative stress were studied in a cohort of 122 consecutive pediatric allogeneic HSCT recipients.
Skelet Muscle
January 2025
Department of Anesthesia and Critical Care, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.
View Article and Find Full Text PDFJ Adv Res
January 2025
The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:
Background: The balance of redox states is crucial for maintaining physiological homeostasis. For decades, the focus has been mainly on the concept of oxidative stress, which is involved in the mechanism of almost all diseases. However, robust evidence has highlighted that reductive stress, the other side of the redox spectrum, plays a pivotal role in the development of various diseases, particularly those related to metabolism and cardiovascular health.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
Pulmonary metastasis represents one of the most prevalent forms of metastasis in advanced melanoma, with mortality rates reaching 70%. Current treatments including chemotherapy, targeted therapy, and immunotherapy frequently exhibit limited efficacy or present high costs. To address these clinical needs, this study presents a biomimetic drug delivery system (Ce6-pTP-CsA) utilizing cryoshocked adipocytes (CsA) encapsulating the prodrug triptolide palmitate (pTP) and the photosensitizer Ce6, exploiting the characteristic of tumor cells to recruit and lipolyze adipocytes for energy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!