Background And Aims: Magnetic resonance imaging is a non-invasive and non-irradiating imaging method, complementary to cardiac ultrasound in the assessment of cardiovascular disease and implicitly of cardiomyopathies. Although it is not a first intention imaging method, it is superior in the assessment of cardiac volumes, left ventricular ejection fraction, in the analysis of cardiac wall dyskinesia and myocardial tissue characteristics with and without using a contrast agent. The purpose of this paper is to review the current knowledge regarding cardiovascular magnetic resonance imaging (CMR) and its applications in cardiomyopathy analysis.

Methods: In order to create this review, relevant articles were searched and analyzed by using MeSH terms such as: "cardiac magnetic resonance imaging", "cardiomyopathy", "myocardial fibrosis". Three main international databases PubMed, Web of Science and Medscape were searched. We carried out a narrative review focused on the current indications of cardiovascular magnetic resonance imaging in cardiomyopathies, both common and raret, of ischemic and nonischemic types.

Results: Cardiac magnetic resonance imaging has a very important role in the diagnosis, assessment and prognosis of common cardiomyopathies (the dilated, hypertrophic and inflammatory types) or other more rare ones such as (amyloidosis, arrhythmogenic right ventricular, non-compaction or Takotsubo cardiomyopathy), as it represents the gold standard for evaluating the ejection fraction, ventricular volumes and mass. CMR techniques, such as late gadolinium enhancement, T1 and T2 mapping have proven their usefulness, helping differentiate between ischemic (subendocardial enhancement) and nonischemic cardiomyopathy (varied pattern) or also establish the etiology. Another important feature of this imaging technique is that it can establish the myocardial viability, thus the chance of contractile recovery after revascularization. This feature is based on the transmural extent of LGE, left ventricle wall thickness and the assessment of the contractile reserve after administration of low dose dobutamine.

Conclusions: Cardiovascular magnetic resonance imaging is an indispensable tool, with proven efficiency, capable of providing the differential diagnosis between ischemic and nonischemic cardiomyopathy or establishing the etiology in the nonischemic type. In addition, these findings have a prognostic value, they may guide the patient management plan and, if necessary, can evaluate treatment response. Therefore, this technique should be part of any routine investigation of various cardiomyopathies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6853046PMC
http://dx.doi.org/10.15386/mpr-1343DOI Listing

Publication Analysis

Top Keywords

magnetic resonance
28
resonance imaging
20
cardiovascular magnetic
16
imaging
8
imaging method
8
ejection fraction
8
ischemic nonischemic
8
nonischemic cardiomyopathy
8
resonance
7
magnetic
6

Similar Publications

Background: Knee injuries resulting in purely cartilaginous defects are rare, and controversy remains regarding the reliability of chondral-only fixation.

Purpose: To systematically review the literature for fixation methods and outcomes after primary fixation of chondral-only defects within the knee.

Study Design: Systematic review; Level of evidence, 5.

View Article and Find Full Text PDF

Background: Studies are still limited on the isolated effect of retear after arthroscopic rotator cuff repair (ARCR) on functional outcomes after the midterm period.

Purpose: To assess the effect of retear at midterm follow-up after ARCR and to identify factors associated with the need for revision surgery.

Study Design: Cohort study; Level of evidence, 3.

View Article and Find Full Text PDF

Mitochondrial membrane protein-associated neurodegeneration (MPAN) is a rare neurodegenerative disorder characterized by spastic paraplegia, parkinsonism and psychiatric and/or behavioral symptoms caused by variants in gene encoding chromosome-19 open reading frame-12 (C19orf12). We present here seven patients from six unrelated families with detailed clinical, radiological, and genetic investigations. Childhood-onset patients predominantly had a spastic ataxic phenotype with optic atrophy, while adult-onset patients were presented with cognitive, behavioral, and parkinsonian symptoms.

View Article and Find Full Text PDF

Myocyte disarray and fibrosis are underlying pathologies of hypertrophic cardiomyopathy (HCM) caused by genetic mutations. However, the extent of their contributions has not been extensively evaluated. In this study, we investigated the effects of genetic mutations on myofiber function and fibrosis patterns in HCM.

View Article and Find Full Text PDF

Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!