A promoter is a short region of DNA (100-1,000 bp) where transcription of a gene by RNA polymerase begins. It is typically located directly upstream or at the 5' end of the transcription initiation site. DNA promoter has been proven to be the primary cause of many human diseases, especially diabetes, cancer, or Huntington's disease. Therefore, classifying promoters has become an interesting problem and it has attracted the attention of a lot of researchers in the bioinformatics field. There were a variety of studies conducted to resolve this problem, however, their performance results still require further improvement. In this study, we will present an innovative approach by interpreting DNA sequences as a combination of continuous FastText N-grams, which are then fed into a deep neural network in order to classify them. Our approach is able to attain a cross-validation accuracy of 85.41 and 73.1% in the two layers, respectively. Our results outperformed the state-of-the-art methods on the same dataset, especially in the second layer (strength classification). Throughout this study, promoter regions could be identified with high accuracy and it provides analysis for further biological research as well as precision medicine. In addition, this study opens new paths for the natural language processing application in omics data in general and DNA sequences in particular.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848157 | PMC |
http://dx.doi.org/10.3389/fbioe.2019.00305 | DOI Listing |
Curr Biol
January 2025
Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, The Netherlands. Electronic address:
Prokaryotes (Bacteria and Archaea) encode a highly diversified arsenal of defence systems that protect them against mobile genetic elements, such as phages and plasmids. In turn, mobile genetic elements encode anti-defence systems that allow them to escape the activity of these defence systems. This has resulted in an evolutionary arms race in which defence systems and anti-defence systems evolve and adapt continuously, driving intriguing innovation and enormous diversification on both sides.
View Article and Find Full Text PDFSyst Appl Microbiol
January 2025
Department of Laboratory Medicine, Medical Microbiology, Lund University, Medicon Village, SE-223 81 Lund, Sweden.; ConCellae AB, Bårslövsvägen 3, 25373 Helsingborg, Sweden.
Six novel Bifidobacterium strains H1HS16N, Bin2N, Hma3N, H6bp22N, H1HS10N, and H6bp9N, were isolated from the honey stomach of Apis mellifera. Cells are Gram-positive, non-motile, non-sporulating, facultatively anaerobic, and fructose 6-phosphate phosphoketolase-positive. Optimal growth conditions occur at 37 °C in anaerobiosis in MRS medium added with 2 % fructose and 0.
View Article and Find Full Text PDFCancer Rep (Hoboken)
January 2025
Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.
Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).
Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.
Front Vet Sci
December 2024
Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan.
There is limited information on the occurrence of and ticks, as well as associated and species in Pakistan. Addressing this knowledge gap, the current study aimed at morphomolecular confirmation of these ticks and molecular assessment of associated Rickettsiales bacteria (, and spp.) in Balochistan, Pakistan.
View Article and Find Full Text PDFLINE-1 (L1) retrotransposition is widespread in many cancers, especially those with a high burden of chromosomal rearrangements. However, whether and to what degree L1 activity directly impacts genome integrity is unclear. Here, we apply whole-genome sequencing to experimental models of L1 expression to comprehensively define the spectrum of genomic changes caused by L1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!