Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pulmonary emphysema is a destructive disease of the lungs that is currently diagnosed via visual assessment of lung Computed Tomography (CT) scans by a radiologist. Visual assessment can have poor inter-rater reliability, is time consuming, and requires access to trained assessors. Quantitative methods that reliably summarize the biologically relevant characteristics of an image are needed to improve the way lung diseases are characterized. The goal of this work was to show how spatial point process models can be used to create a set of radiologically derived quantitative lung biomarkers of emphysema. We formalized a general framework for applying spatial point processes to lung CT scans, and developed a Shot Noise Cox Process to quantify how radiologically based emphysematous tissue clusters into larger structures. Bayesian estimation of model parameters was done using spatial Birth-Death MCMC (BD-MCMC). In simulations, we showed the BD-MCMC estimation algorithm is able to accurately recover model parameters. In an application to real lung CT scans from the COPDGene cohort, we showed variability in the clustering characteristics of emphysematous tissue across disease subtypes that were based on visual assessments of the CT scans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867806 | PMC |
http://dx.doi.org/10.1016/j.spasta.2018.12.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!