A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surface-Atmosphere Coupling Scale, the Fate of Water, and Ecophysiological Function in a Brazilian Forest. | LitMetric

Tropical South America plays a central role in global climate. Bowen ratio teleconnects to circulation and precipitation processes far afield, and the global CO growth rate is strongly influenced by carbon cycle processes in South America. However, quantification of basin-wide seasonality of flux partitioning between latent and sensible heat, the response to anomalies around climatic norms, and understanding of the processes and mechanisms that control the carbon cycle remains elusive. Here, we investigate simulated surface-atmosphere interaction at a single site in Brazil, using models with different representations of precipitation and cloud processes, as well as differences in scale of coupling between the surface and atmosphere. We find that the model with parameterized clouds/precipitation has a tendency toward unrealistic perpetual light precipitation, while models with explicit treatment of clouds produce more intense and less frequent rain. Models that couple the surface to the atmosphere on the scale of kilometers, as opposed to tens or hundreds of kilometers, produce even more realistic distributions of rainfall. Rainfall intensity has direct consequences for the "fate of water," or the pathway that a hydrometeor follows once it interacts with the surface. We find that the model with explicit treatment of cloud processes, coupled to the surface at small scales, is the most realistic when compared to observations. These results have implications for simulations of global climate, as the use of models with explicit (as opposed to parameterized) cloud representations becomes more widespread.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851591PMC
http://dx.doi.org/10.1029/2019MS001650DOI Listing

Publication Analysis

Top Keywords

south america
8
global climate
8
carbon cycle
8
cloud processes
8
surface atmosphere
8
find model
8
models explicit
8
explicit treatment
8
processes
5
surface-atmosphere coupling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!