The aim of this study was to determine the effect of the posterior ligaments and facet joints on the shear stiffness of lower cervical functional spinal units in anterior, posterior, and lateral shear. Five functional spinal units were loaded in anterior, posterior, and right lateral shear up to 100 N using a custom-designed apparatus in a materials testing machine. Specimens were tested in three conditions: intact, with the posterior ligaments severed, and with the facet joints removed. There was a significant decrease in anterior stiffness in the 20-100 N load range from 186 (range: 98-327) N/mm in the intact condition to 105 (range: 78-142) N/mm in the disc-only condition (p = 0.03). Posterior stiffness between these condition decreased significantly from 134 (range: 92-182) N/mm to 119 (range: 83-181) N/mm (p = 0.03). There was no significant effect of posterior ligament removal on shear stiffness. No significant differences were found in the lateral direction or in the 0-20 N range for any direction. Under a 100-N shear load, the facet joints played a significant role in the stiffness of the cervical spine in the anterior-posterior direction, but not in the lateral direction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0954411919889194 | DOI Listing |
J Clin Med
January 2025
Operative Unit of Vascular Surgery, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy.
: Carotid artery stenosis (CAS) is one of the main causes of stroke, and the vulnerability of plaque has been proved to be a determinant. A joint analysis of shear wave elastography, a radiofrequency echo-based wall tracking technique for arterial stiffness evaluation, and of autonomic and baroreflex function is proposed to noninvasively, preoperatively assess plaque vulnerability in asymptomatic CAS patients scheduled for carotid endarterectomy. : Elastographic markers of arterial stiffness were derived preoperatively in 78 CAS patients (age: 74.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering, Kunsan National University, Gunsan-si 54150, Republic of Korea.
The key structural components of a wind turbine blade, such as the skin, spar cap, and shear web, are fabricated from fiber-reinforced composite materials. The spar, predominantly manufactured via resin infusion-a process of resin injection and curing in carbon fibers-is prone to initial defects, such as pores, wrinkles, and delamination. This study suggests employing the pultrusion technique for spar production to consistently obtain a uniform cross-section and augment the reliability of both the manufacturing process and the design.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Electrical & Control Engineering, Tongmyong University, Busan 48520, Republic of Korea.
Resilient mounts play a vital role in anti-vibration and shock-absorption systems, making precise estimation of their static and dynamic stiffness essential for ensuring optimal mechanical performance and effective design. This study investigates the behavior of resilient mounts by analyzing their static and dynamic stiffness characteristics through the application of various hyperelastic constitutive models. Seven hyperelastic models were reviewed and systematically compared using numerical simulations, experimental data, and analytical solutions.
View Article and Find Full Text PDFJ Ultrason
December 2024
Department of General and Pediatric Radiology, Wrocław Medical University, Wrocław, Poland.
Aim: Chronic hepatitis C virus infections can lead to liver fibrosis. Appropriate treatment of chronic hepatitis C may result in significant fibrosis reversal. The best method to assess liver fibrosis is an invasive hepatic biopsy.
View Article and Find Full Text PDFFront Physiol
January 2025
Faculty of Health Sciences, University of Primorska, Koper, Slovenia.
Introduction: Proprioceptive neuromuscular facilitation (PNF) stretching is widely used to increase range of motion, but its underlying mechanisms are not well understood. This experimental, parallel group design study investigated the acute effects of PNF stretching on rectus femoris muscle stiffness and explored a potential dose-response relationship.
Methods: Thirty healthy young adults (23 females, 7 males) were randomly assigned to either a PNF stretching group (n = 15; 22.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!