The purpose of this study was to investigate the role of DNA and chromosome repair in determining the difference in radiosensitivity between a radiosensitive murine leukemic lymphoblastoid cell line, L5178Y-S, and its radioresistant counterpart, L5178Y-R. Populations of cells in the G1 or G2 phase of the cell cycle were obtained by centrifugal elutriation and irradiated with X-ray doses up to 10 Gy and allowed to repair at 37 degrees C for various periods. The kinetics of DNA double-strand break repair was estimated using the DNA neutral filter elution method, and the kinetics of chromosome repair was measured by premature chromosome condensation. L5178Y-S cells exhibited decreased repair rates and limited repair capacity at both the DNA and chromosome level in both G1 and G2 phases when compared to L5178Y-R cells. For the repair-competent L5178Y-R cells, the rate of DNA repair was similar in G1 and G2 cells and exhibited both fast and slow components. While the kinetics of chromosome break repair in G1 cells was similar to that of DNA repair, chromosome repair in G2 cells had a diminished fast component and lagged behind DNA repair in terms of fraction of damage repaired. Interestingly, concomitant with a diminished repair capacity in L5178Y-S cells, the number of chromatid exchanges in G2 cells increased with time, whereas it remained constant with repair time in L5178Y-R cells. These results suggest that the basis for the exceptional radiosensitivity of L5178Y-S cells is a defect in the repair of both DNA double-strand breaks and chromosome damage.
Download full-text PDF |
Source |
---|
JBJS Case Connect
January 2025
Department of Orthopedic Surgery, Albany Medical Center, Albany, New York.
Case: We present the case of a 24-year-old woman who sustained a left midshaft clavicle fracture with acute subclavian artery compression, subclavian vein laceration, and complete brachial plexus palsy after a motor vehicle collision. The patient underwent urgent open reduction internal fixation of the clavicle and repair of the subclavian vein. Two years later, she underwent opponensplasty and flexor digitorum profundus tendon transfers.
View Article and Find Full Text PDFJ Hand Surg Eur Vol
January 2025
Department of Orthopedics and Traumatology, Başakşehir Çam ve Sakura City Hospital, İstanbul, Turkey.
Early repair of flexor tendon injuries is ideal, but delays are common. We studied the outcomes of flexor tendon repairs delayed from 5 days to 6 months and carried out under wide-awake local anaesthesia with no tourniquet (WALANT). Twenty-four patients (29 fingers) who underwent primary flexor tendon repair on zone II using a four- to six-strand core suture technique, followed by controlled early active motion therapy.
View Article and Find Full Text PDFCirc Res
January 2025
Department of Integrative Physiology (W.G.P., J.F.M.), Baylor College of Medicine, Houston, TX.
PLoS Genet
January 2025
MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
The genetic circuitry that encodes the developmental programme of mammals is regulated by transcription factors and chromatin modifiers. During early gestation, the three embryonic germ layers are established in a process termed gastrulation. The impact of deleterious mutations in chromatin modifiers such as the polycomb proteins manifests during gastrulation, leading to early developmental failure and lethality in mouse models.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina.
Tissue-repair regulatory T cells (trTregs) comprise a specialized cell subset essential for tissue homeostasis and repair. While well-studied in sterile injury models, their role in infection-induced tissue damage and antimicrobial immunity is less understood. We investigated trTreg dynamics during acute Trypanosoma cruzi infection, marked by extensive tissue damage and strong CD8+ immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!