The red cusk-eel (Genypterus chilensis) is a native species with strong potential to support Chilean aquaculture diversification. Under commercial conditions, fish are exposed to several stressors. To date, little is known about the mechanism involved in the stress response of red cusk-eel, and there is no information related to the regulation mediated by long noncoding RNAs (lncRNAs). The objective of this work was to identify for the first time the lncRNAs in the transcriptome of G. chilensis and to evaluate the differential expression levels of lncRNAs in the liver, head kidney, and skeletal muscle in response to handling stress. We used previously published transcriptome data to identify the lncRNAs by applying a series of filters based on annotation information in several databases to discard coding sequences. We identified a total of 14,614 putative lncRNAs in the transcriptome of red cusk-eel, providing a useful lncRNA reference resource to be used in future studies. We evaluated their differential expression in response to handling stress in the liver, head kidney, and skeletal muscle, identifying 112, 323, and 108 differentially expressed lncRNAs, respectively. The results suggest that handling stress in red cusk-eel generate an altered metabolic status in liver, altered immune response in head kidney, and skeletal muscle atrophy through an important coding and noncoding gene network. This is the first study that identifies lncRNAs in Genypterus genus and that evaluates the relation between handling stress and lncRNAs in teleost fish, thereby providing valuable information regarding noncoding responses to stress in Genypterus species.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10126-019-09934-6DOI Listing

Publication Analysis

Top Keywords

handling stress
20
red cusk-eel
20
response handling
12
head kidney
12
kidney skeletal
12
skeletal muscle
12
long noncoding
8
noncoding rnas
8
stress red
8
cusk-eel genypterus
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!