Syringic acid promotes proliferation and migration of Schwann cells via down-regulating miR-451-5p.

Acta Biochim Biophys Sin (Shanghai)

Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

Published: December 2019

Schwann cells are the main force in spontaneous regeneration after peripheral nerve injury. The neurotrophic factors could promote the regeneration, but clinical applications of these factors are limited by some constraints. Hence, searching for new substances to elevate the function of Schwann cells and facilitate the regeneration of nerve is urgently needed. Syringic acid (SA) is a natural product with neuroprotective activity in vivo, but the role of SA on Schwann cells remains unclear. In this study, we for the first time found that SA was able to promote the proliferation and migration of Schwann cells, two important abilities in the process of regeneration. Then, microRNA (miRNA) microarray analysis was performed and 26 differentially expressed miRNAs (22 down-regulated and 4 up-regulated) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analyses found that the target genes of these miRNAs were mainly enriched in cellular response to chemical stimulus and cancer-related pathways, respectively. Subsequently, the levels of top 6 down-regulated miRNAs were validated by RT-qPCR and miR-451-5p was shown to be the most down-regulated one. Further experiments demonstrated that inhibition of miR-451-5p significantly promoted the proliferation and migration of Schwann cells. These results suggested that SA promoted the proliferation and migration of Schwann cells via down-regulation of miR-451-5p, and SA could be developed into a promising nutritional supplement to assist peripheral nerve regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1093/abbs/gmz118DOI Listing

Publication Analysis

Top Keywords

schwann cells
28
proliferation migration
16
migration schwann
16
syringic acid
8
peripheral nerve
8
promoted proliferation
8
schwann
7
cells
7
regeneration
5
acid promotes
4

Similar Publications

Neuronal TRPV1-CGRP axis regulates peripheral nerve regeneration through ERK/HIF-1 signaling pathway.

J Neurochem

January 2025

State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.

Severe trauma frequently leads to nerve damage. Peripheral nerves possess a degree of regenerative ability, and actively promoting their recovery can help restore the sensory and functional capacities of tissues. The neuropeptide calcitonin gene-related peptide (CGRP) is believed to regulate the repair of injured peripheral nerves, with neuronal transient receptor potential vanilloid type 1 (TRPV1) potentially serving as a crucial upstream factor.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and impaired synaptic function. While Schwann cells have been traditionally viewed as peripheral supportive cells, especially in motor neuron disease, recent evidence indicates that they play a significant role in ALS by impacting motor neuron survival and plasticity, influencing inflammatory responses, and altering myelination processes.

View Article and Find Full Text PDF

Recent advancements in tissue engineering have promoted the development of nerve guidance conduits (NGCs) that significantly enhance peripheral nerve injury treatment, improving outcomes and recovery rates. However, utilising tailored biomimetic three-dimensional (3D) topological porous structures combined with multiple bio-effect neurotrophic factors to create environments similar to neural tissues, regulate local immune responses, and develop a supportive microenvironment to promote peripheral nerve regeneration and repair poses significant challenges. Herein, a biomimetic extracellular matrix (ECM) NGC featuring an interconnected 3D porous network and sustained delivery of insulin-like growth factor-1 (IGF-1) is designed using multi-functional gelatine microcapsules (GMs).

View Article and Find Full Text PDF

As one of the most commonly used general anesthetics (GAs) in surgery, numerous studies have demonstrated the detrimental effects of sevoflurane exposure on myelination in the developing and elderly brain. However, the impact of sevoflurane exposure on intact myelin structure in the adult brain is barely discovered. Here, we show that repeated sevoflurane exposure, but not single exposure, causes hypomyelination and abnormal ultrastructure of myelin sheath in the prefrontal cortex (PFC) of adult male mice, which is considered as a critical brain region for general anesthesia mediated consciousness change.

View Article and Find Full Text PDF

Introduction: Motor recovery following nerve injury is dependent on time required for muscle reinnervation. This process is imperfect, however, and recovery is often incomplete. At the neuromuscular junction (NMJ), macrophage signaling aids muscle reinnervation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!