Herein the first example of electrochemically enabled, NiCl-catalyzed reductive decarboxylative coupling of N-hydroxyphthalimide (NHP) esters with quinoxalinones is reported. A range of primary, secondary, tertiary aliphatic carboxylic acids and amino acid-derived esters were tolerated well. This decarboxylative coupling allows access to structurally diverse 3-alkylated quinoxalinones in up to 91% yields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cc07840a | DOI Listing |
Nat Chem
January 2025
Department of Chemistry, Scripps Research, La Jolla, CA, USA.
Amino alcohols are vital in natural products, pharmaceuticals and agrochemicals, and as key building blocks for various applications. Traditional synthesis methods often rely on polar bond retrosynthetic analysis, requiring extensive protecting group manipulations that complicate direct access. Here we show a streamlined approach using a serine-derived chiral carboxylic acid in stereoselective electrocatalytic decarboxylative transformations, enabling efficient access to enantiopure amino alcohols.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
Org Biomol Chem
December 2024
Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, 24-Parganas (N), Pin-743165, India.
The application of visible light as an energy source provides a new avenue in organic transformation due to its mildness, efficiency and selectivity. In fact, recent years have witnessed remarkable advances in photoinduced decarboxylative coupling reactions involving carboxylic acids and their derivatives. Under appropriate photoredox conditions they undergo single electron transfer (SET), resulting in reactive radicals which can assemble with suitable reaction partners.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Translational Biomedicine, St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia.
Currently, the TAAR1 receptor has been identified in various cell groups in the intestinal wall. It recognizes biogenic amine compounds like phenylethylamine or tyramine, which are products of decarboxylation of phenylalanine and tyrosine by endogenous or bacterial decarboxylases. Since several gut bacteria produce these amines, TAAR1 is suggested to be involved in the interaction between the host and gut microbiota.
View Article and Find Full Text PDFOrg Lett
December 2024
Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea.
Enamides have emerged as robust alternatives for enamines, exhibiting versatile reactivity for further synthetic modifications, including nucleophilic addition, cycloaddition, and asymmetric hydrogenation. While transition-metal-catalyzed cross-coupling of alkenyl (pseudo)halides with amides has been widely employed to construct this valuable scaffold, it suffers from some limitations, such as the need for transition-metal catalysts and the preparative synthesis of alkenyl (pseudo)halides. In this study, we report a mild and convenient stereoretentive decarboxylative amidation of α,β-unsaturated carboxylic acids with easily procurable 1,4,2-dioxazol-5-ones, providing a practical synthetic route to enamides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!