Polar metals are commonly defined as metals with polar structural distortions. Strict symmetry restrictions make them an extremely rare breed as the structural constraints favor insulating over metallic phase. Moreover, no polar metals are known to be magnetic. Here we report on the realization of a magnetic polar metal phase in a BaTiO/SrRuO/BaTiO heterostructure. Electron microscopy reveals polar lattice distortions in three-unit-cells thick SrRuO between BaTiO layers. Electrical transport and magnetization measurements reveal that this heterostructure possesses a metallic phase with high conductivity and ferromagnetic ordering with high saturation moment. The high conductivity in the SrRuO layer can be attributed to the effect of electrostatic carrier accumulation induced by the BaTiO layers. Density-functional-theory calculations provide insights into the origin of the observed properties of the thin SrRuO film. The present results pave a way to design materials with desired functionalities at oxide interfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868157PMC
http://dx.doi.org/10.1038/s41467-019-13270-7DOI Listing

Publication Analysis

Top Keywords

magnetic polar
8
polar metal
8
metal phase
8
polar metals
8
metallic phase
8
batio layers
8
high conductivity
8
polar
6
interface-induced magnetic
4
phase
4

Similar Publications

Integration of Asymmetric Multi-Path Hollow Structure and Multiple Heterogeneous Interfaces in FeO@C@NiO Nanoprisms Enabling Ultra-Low and Broadband Absorption.

Small

January 2025

Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, P. R. China.

A reasonable construction of hollow structures to obtain high-performance absorbers is widely studied, but it is still a challenge to select suitable materials to improve the low-frequency attenuation performance. Here, the FeO@C@NiO nanoprisms with unique tip shapes, asymmetric multi-path hollow cavity, and core-shell heteroepitaxy structure are designed and synthesized based on anisotropy and intrinsic physical characteristics. Impressively, by changing the load of NiO, the composites achieve strong absorption, broadband, low-frequency absorption: the reflection loss of -55.

View Article and Find Full Text PDF

Magnetophononics and the chiral phonon misnomer.

PNAS Nexus

January 2025

The Harrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040, USA.

The direct, ultrafast excitation of polar phonons with electromagnetic radiation is a potent strategy for controlling the properties of a wide range of materials, particularly in the context of influencing their magnetic behavior. Here, we show that, contrary to common perception, the origin of phonon-induced magnetic activity does not stem from the Maxwellian fields resulting from the motion of the ions themselves or the effect their motion exerts on the electron subsystem. Through the mechanism of electron-phonon coupling, a coherent state of circularly polarized phonons generates substantial non-Maxwellian fields that disrupt time-reversal symmetry, effectively emulating the behavior of authentic magnetic fields.

View Article and Find Full Text PDF

Synthesis and characterization of corn starch esters obtained in oleic acid/L(+)-tartaric acid medium.

Carbohydr Polym

March 2025

Planta Piloto de Ingeniería Química (PLAPIQUI), CONICET, - Universidad Nacional del Sur (UNS), Camino La Carrindanga km 7, 8000 Bahía Blanca, Argentina; Departamento de Ingeniería Química, UNS, Avenida Alem 1253, 8000 Bahía Blanca, Argentina. Electronic address:

In this study, corn starch esters were obtained by a novel methodology using oleic acid as an esterifying agent and L(+)-tartaric acid as both catalyst and esterifying agent. The degree of substitution (DS) was determined along the reaction time to control the level of substitution achieved (up to 0.33), while all the other reaction parameters were maintained constant.

View Article and Find Full Text PDF

Hyphenation of 2D NMR With Hydrogenative PHIP.

Magn Reson Chem

January 2025

Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.

Parahydrogen induced polarisation (PHIP) is often used to enhance the sensitivity of NMR, with the purpose of extending the applicability of the technique. Nuclear spin hyperpolarisation obtained via PHIP is generally localised on the protons derived from the addition of para-enriched hydrogen to an unsaturated substrate. This limitation has been previously addressed by pulse schemes that can spread this hyperpolarised magnetisation through the entire network of J-coupled protons in the product molecule.

View Article and Find Full Text PDF

RIDME Spectroscopy: New Topics Beyond the Determination of Electron Spin-Spin Distances.

J Phys Chem Lett

January 2025

Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir Prelog Weg 2, 8093 Zurich, Switzerland.

Relaxation-induced dipolar modulation enhancement (RIDME) is a pulse EPR experiment originally designed to determine distances between spin labels. However, RIDME has several features that make it an efficient tool in a number of "nonconventional" applications, away from the original purpose of this pulse experiment. RIDME appears to be an interesting experiment to probe longitudinal electron spin dynamics, e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!