A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Miocene impact ejecta layer in the pelagic Pacific Ocean. | LitMetric

A Miocene impact ejecta layer in the pelagic Pacific Ocean.

Sci Rep

Submarine Resources Research Center, Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan.

Published: November 2019

Meteorite impacts have caused catastrophic perturbations to the global environment and mass extinctions throughout the Earth's history. Here, we present petrographic and geochemical evidence of a possible impact ejecta layer, dating from about 11 Ma, in deep-sea clayey sediment in the Northwest Pacific. This clay layer has high platinum group element (PGE) concentrations and features a conspicuous negative Os isotope anomaly (Os/Os as low as ~0.2), indicating an influx of extraterrestrial material. It also contains abundant spherules that include pseudomorphs suggestive of porphyritic olivine as well as spinel grains with euhedral, dendritic and spherical forms and NiO contents as great as 23.3 wt%, consistent with impact ejecta. Osmium isotope stratigraphy suggests a most plausible depositional age of ~11 Ma (Miocene) for this layer, as determined by fitting with the seawater evolution curve. No large impact crater of this age is known on land, even within the relatively large uncertainty range of the relative Os age. Thus, we suggest that an unrecognised impact event in the middle or late Miocene produced the impact ejecta layer of the Northwest Pacific.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868271PMC
http://dx.doi.org/10.1038/s41598-019-52709-1DOI Listing

Publication Analysis

Top Keywords

impact ejecta
16
ejecta layer
12
northwest pacific
8
layer
5
impact
5
miocene impact
4
ejecta
4
layer pelagic
4
pelagic pacific
4
pacific ocean
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!