AI Article Synopsis

Article Abstract

Fibropapillomatosis (FP) is a tumor disease associated with a herpesvirus (chelonid herpesvirus 5 [ChHV5]) that affects mainly green turtles globally. Understanding the epidemiology of FP has been hampered by a lack of robust serological assays to monitor exposure to ChHV5. This is due in part to an inability to efficiently culture the virus for neutralization assays. Here, we expressed two glycoproteins (FUS4 and FUS8) from ChHV5 using baculovirus. These proteins were immobilized on enzyme-linked immunosorbent assay plates in their native form and assayed for reactivity to two types of antibodies, full-length 7S IgY and 5.7S IgY, which has a truncated Fc region. Turtles from Florida were uniformly seropositive to ChHV5 regardless of tumor status. In contrast, in turtles from Hawaii, we detected strong antibody reactivity mainly in tumored animals, with a lower antibody response being seen in nontumored animals, including those from areas where FP is enzootic. Turtles from Hawaii actively shedding ChHV5 were more seropositive than nonshedders. In trying to account for differences in the serological responses to ChHV5 between green turtles from Hawaii and green turtles from Florida, we rejected the cross-reactivity of antibodies to other herpesviruses, differences in viral epitopes, or differences in procedure as likely explanations. Rather, behavioral or other differences between green turtles from Hawaii and green turtles from Florida might have led to the emergence of biologically different viral strains. While the strains from turtles in Florida apparently spread independently of tumors, the transmission of the Hawaiian subtype relies heavily on tumor formation. Fibropapillomatosis (FP) is a tumor disease associated with chelonid herpesvirus 5 (ChHV5) that is an important cause of mortality in threatened green turtles globally. FP is expanding in Florida and the Caribbean but declining in Hawaii. We show that Hawaiian turtles mount antibodies to ChHV5 mainly in response to tumors, which are the only sites of viral replication, whereas tumored and nontumored Floridian turtles are uniformly seropositive. Tumor viruses that depend on tumors for replication and spread are rare, with the only example being the retrovirus causing walleye dermal sarcoma in fish. The Hawaiian strain of ChHV5 may be the first DNA virus with such an unusual life history. Our findings, along with the fundamental differences in the life histories between Floridian turtles and Hawaiian turtles, may partly explain the differential dynamics of FP between the two regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997749PMC
http://dx.doi.org/10.1128/JVI.01658-19DOI Listing

Publication Analysis

Top Keywords

green turtles
32
turtles hawaii
20
turtles florida
20
turtles
16
chhv5
9
green
8
chhv5-seropositive green
8
fibropapillomatosis tumor
8
tumor disease
8
disease associated
8

Similar Publications

Differences in trophic level may result in differences in chemical exposure between species of sea turtles, as pollutants may bioaccumulate differentially in diet items. It is, therefore, crucial to understand species-specific differences in exposure and effect to accurately assess chemical risk to individual species. This study used blood collected from green and loggerhead turtles foraging in Moreton Bay, Queensland, Australia, to assess differences in chemical exposure and effect of two species foraging in the same area at different trophic levels.

View Article and Find Full Text PDF

Background: People with diabetes are at increased risk of hospitalisation, morbidity, and mortality following SARS-CoV-2 infection. Long-term outcomes for people with diabetes previously hospitalised with COVID-19 are, however, unknown. This study aimed to determine the longer-term physical and mental health effects of COVID-19 in people with and without diabetes.

View Article and Find Full Text PDF

Nest Site Selection by Green Sea Turtles () and Implications for Conservation on Qilianyu, Xisha Islands, South China Sea.

Ecol Evol

January 2025

Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences Hainan Normal University Haikou China.

The green sea turtle () is the only sea turtle species that breeds in China, and the largest remaining nesting grounds for green sea turtles in Chinese waters is found on the Qilianyu atoll of the Xisha Islands. Nesting site selection is particularly important for egg survival, and understanding the microhabitat characteristics of green sea turtle nesting sites is crucial for delineating priority conservation areas for nesting grounds. In this study, we aimed to examine the role of several microhabitat ecological factors in the selection of nesting sites and the success of nesting.

View Article and Find Full Text PDF

DNA damage triggers the death of green sea turtle-derived cells at high temperature.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Graduate School of Science and Engineering, Iwate University, 4-3-5, Ueda, Morioka-city 020-8551, Japan.

As temperatures rise due to increasingly severe global warming, the effect of high temperatures on wildlife, including green sea turtles, is one of the issues that must be addressed to ensure the conservation of biodiversity. In the current study, we found that green sea turtle cell death due to apoptosis occurred at 37 °C, which suppressed cell proliferation. We also found that high temperature-induced heat stress led to the accumulation of DNA damage in green sea turtle cells.

View Article and Find Full Text PDF

The rising diversity and concentration of contaminants have surpassed ecological thresholds, threatening marine ecosystems. The effects of pollutants on marine animals, particularly sea turtles, are receiving increased attention due to their role as indicators of human impacts. This study examined the health implications of contaminant exposure in three green turtle (Chelonia mydas) foraging sites in the southern Great Barrier Reef, Australia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!