Gambogic acid (GA) is a natural compound with a polyprenylated xanthone structure that has antiinflammatory, antioxidant, and neuroprotective properties and acts as a chemopreventive agent. GA exhibits anti-tumor, antimicrobial, and anti-proliferative effects on cancer cells. In the current study, the effect of GA on phosphoinositide kinase-3 (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway was examined in human U251 glioma cells. Cell viability and apoptosis were evaluated by MTT and Annexin V/PI Double Staining. The expressions of P38, AKT, and mTOR were evaluated by western blot and qRT-PCR, respectively. MagBeads Total RNA Extraction Kit was used to isolate cell tissue RNA. GA decreased the phosphorylation of P38, AKT, and mTOR. Inhibitors of PI3K (LY294002) enhanced the phosphorylation of P38, AKT, and mTOR. GA reduced the phosphorylation of ribosomal protein precursors (Pre) and upstream binding factor (UBF), and insulin-like growth factor I (IGF-1) further enhanced the cell proliferation and expression of Pre and UBF. These results suggested that downregulation of PI3K/AKT/mTOR signaling pathway may be an important mediator in GA-affected ribosomal occurrence in glioma cells.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2020.17425DOI Listing

Publication Analysis

Top Keywords

glioma cells
12
signaling pathway
12
p38 akt
12
akt mtor
12
gambogic acid
8
ribosomal occurrence
8
occurrence glioma
8
target rapamycin
8
phosphorylation p38
8
acid ribosomal
4

Similar Publications

Sodium valproate enhances efficacy of NKG2D CAR-T cells against glioblastoma.

Front Immunol

January 2025

Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Chimeric antigen receptor T-cell (CAR-T) therapies have shown promise in glioblastoma clinical studies, but responses remain inconsistent due to heterogeneous tumor antigen expression and immune evasion post-treatment. NKG2D CAR-T cells have demonstrated a favorable safety profile in patients with hematologic tumors, and showed robust antitumor efficacy in various xenograft models, including glioblastoma. However, malignant glioma cells evade immunological surveillance by reducing NKG2D ligands expression or cleavage.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM), the most prevalent primary malignant brain tumor in adults, exhibits a dismal 6.9% five-year survival rate post-diagnosis. Thymoquinone (TQ), the most abundant bioactive compound in Nigella sativa, has been extensively researched for its anticancer properties across various human cancers.

View Article and Find Full Text PDF

Preclinical and First-In-Human Imaging of Novel [F]F-FAPI-FUSCC-07 Tracer: Comparative Prospective Study with [F]F-FAPI-42 and [F]F-FAPI-74.

Mol Pharm

January 2025

Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.

This study aimed to develop and evaluate a novel fibroblast activation protein (FAP)-specific tracer, fluorine-18-labeled fibroblast activation protein inhibitor-FUSCC-07 ([F]F-FAPI-FUSCC-07), for use in both preclinical and clinical settings. Preclinical evaluations were conducted to assess the stability and partition coefficient of [F]F-FAPI-FUSCC-07. Experiments involving human glioma U87MG cells demonstrated its cellular uptake and inhibitory properties.

View Article and Find Full Text PDF

IDH1 mutation inhibits differentiation of astrocytes and glioma cells with low oxoglutarate dehydrogenase expression by disturbing α-ketoglutarate-related metabolism and epigenetic modification.

Life Metab

April 2024

State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.

Isocitrate dehydrogenase (IDH) mutations frequently occur in lower-grade gliomas and secondary glioblastomas. Mutant IDHs exhibit a gain-of-function activity, leading to the production of D-2-hydroxyglutarate (D-2HG) by reducing α-ketoglutarate (α-KG), a central player in metabolism and epigenetic modifications. However, the role of α-KG homeostasis in IDH-mutated gliomagenesis remains elusive.

View Article and Find Full Text PDF

Background: Lower-grade glioma (LGG) exhibits significant heterogeneity in clinical outcomes, and current prognostic markers have limited predictive value. Despite the growing recognition of histone modifications in tumor progression, their role in LGG remains poorly understood. This study aimed to develop a histone modification-based risk signature and investigate its relationship with drug sensitivity to guide personalized treatment strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!