We report a case of rapidly progressive nonfluent variant PPA (nfvPPA), age at onset 77 years old and disease duration 3.3 years, who came to post mortem and was found to have TDP-43 type C pathology, an unusual finding for nfvPPA. All prior TDP-43 type C cases from the UCL FTD cohort (n=25) had a semantic variant PPA (svPPA) phenotype, with all having a younger age at onset and longer disease duration than the nfvPPA case. Volumetric analysis of MRI from the nfvPPA case, twelve of the svPPA cases and ten age-matched controls was performed. Whilst left frontal and insular volumes were lower in the nfvPPA case compared with svPPA, cortical and medial temporal lobe volumes were lower (particularly on the right) in the svPPA group compared with the nfvPPA patient. Such anatomical involvement is likely to be consistent with the presence of a nonfluent aphasia (left frontal lobe and insula), and only mild semantic deficit early in the illness (left but not right temporal lobe). Such unique cases add to the heterogeneity of the FTD spectrum.

Download full-text PDF

Source
http://dx.doi.org/10.1080/13554794.2019.1690665DOI Listing

Publication Analysis

Top Keywords

tdp-43 type
12
nfvppa case
12
type pathology
8
nonfluent variant
8
variant ppa
8
age onset
8
disease duration
8
left frontal
8
volumes lower
8
temporal lobe
8

Similar Publications

The degeneration of pyramidal tracts has been reported in frontotemporal lobar degeneration with TDP-43 (TAR DNA-binding protein 43) pathology (FTLD-TDP) type C. Herein, we examined the detailed pathology of the primary motor area and pyramidal tracts in the central nervous system in four autopsy cases of FTLD-TDP type C, all of which were diagnosed by neuropathological, biochemical, and genomic analyses. Three patients showed right dominant atrophy of the frontal and temporal lobes, while the other patient showed left dominant atrophy.

View Article and Find Full Text PDF
Article Synopsis
  • About 20% of familial ALS cases are linked to mutations in the SOD1 gene, and traumatic brain injury (TBI) is identified as a possible risk factor.
  • Researchers studied the effects of repetitive TBI on ALS progression in SOD1 mouse models and the role of Sarm1, a regulator of axonal degeneration.
  • Results showed that TBI worsened ALS symptoms and disease progression, but losing Sarm1 helped improve outcomes and reduced nerve damage, indicating potential for SARM1-targeted treatments.
View Article and Find Full Text PDF

Unlabelled: The neurodegenerative disorder Frontotemporal Dementia (FTD) can be caused by a repeat expansion (GGGGCC; G4C2) in C9orf72. The function of wild-type C9orf72 and the mechanism by which the C9orf72-G4C2 mutation causes FTD, however, remain unresolved. Diverse disease models including human brain samples and differentiated neurons from patient-derived induced pluripotent stem cells (iPSCs) identified some hallmarks associated with FTD, but these models have limitations, including biopsies capturing only a static snapshot of dynamic processes and differentiated neurons being labor-intensive, costly, and post-mitotic.

View Article and Find Full Text PDF

Biomolecular condensates are dynamic membraneless compartments that regulate a myriad of cellular functions. A particular type of physiological condensate called stress granules (SGs) has gained increasing interest due to its role in the cellular stress response and various diseases. SGs, composed of several hundred RNA-binding proteins, form transiently in response to stress to protect mRNAs from translation and disassemble when the stress subsides.

View Article and Find Full Text PDF

Mutations in the ANXA11 gene, encoding an RNA-binding protein, have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS), but the underlying in vivo mechanisms remain unclear. This study examines the clinical features of ALS patients harboring the ANXA11 hotspot mutation p.P36R, characterized by late-onset motor neuron disease and occasional multi-system involvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!