Positively Charged Residues in the Head Domain of P2X4 Receptors Assist the Binding of ATP.

J Chem Inf Model

Departamento de Ciencia y Tecnología , Universidad Nacional de Quilmes , Sáenz Peña 352 , B1876BXD Bernal, Buenos Aires , Argentina.

Published: February 2020

AI Article Synopsis

  • P2X receptors are ion channels in mammalian cell membranes that open when ATP binds to them, but the specific sequence of changes leading to this opening is not fully understood.
  • The research uses umbrella sampling simulations to explore how ATP binds to the P2X4 receptor, revealing a metastable state that helps facilitate this binding.
  • This new understanding suggests a revised mechanism for how ATP is captured by P2X4 receptors, involving stabilizing interactions with positively charged residues.

Article Abstract

P2X receptors are a family of trimeric cationic channels located in the membrane of mammalian cells. They open in response to the binding of ATP. The differences between the closed and open structures have been described in detail for some members of the family. However, the order in which the conformational changes take place as ATP enters the binding cleft, and the residues involved in the intermediate stages, are still unknown. Here, we present the results of umbrella sampling simulations aimed to elucidate the sequence of conformational changes that occur during the reversible binding of ATP to the P2X4 receptor. The simulations also provided information about the interactions that develop in the course of the process. In particular, they revealed the existence of a metastable state which assists the binding. This state is stabilized by positively charged residues located in the head domain of the receptor. Based on these findings, we propose a novel mechanism for the capture of ATP by P2X4 receptors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.9b00856DOI Listing

Publication Analysis

Top Keywords

binding atp
12
positively charged
8
charged residues
8
head domain
8
p2x4 receptors
8
conformational changes
8
atp p2x4
8
binding
5
atp
5
residues head
4

Similar Publications

Molecular basis of JAK kinase regulation guiding therapeutic approaches: Evaluating the JAK3 pseudokinase domain as a drug target.

Adv Biol Regul

December 2024

Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpönkatu 34, 33014, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Finland; Department of Microbiology, Fimlab Laboratories, P.O.Box 66, 33013, Tampere, Finland. Electronic address:

Janus kinases (JAK1-3, TYK2) are critical mediators of cytokine signaling and their role in hematological and inflammatory and autoimmune diseases has sparked widespread interest in their therapeutic targeting. JAKs have unique tandem kinase structure consisting of an active tyrosine kinase domain adjacent to a pseudokinase domain that is a hotspot for pathogenic mutations. The development of JAK inhibitors has focused on the active kinase domain and the developed drugs have demonstrated good clinical efficacy but due to off-target inhibition cause also side-effects and carry a black box warning limiting their use.

View Article and Find Full Text PDF

The efflux pump ABCC1/MRP1 constitutively restricts PROTAC sensitivity in cancer cells.

Cell Chem Biol

December 2024

CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria. Electronic address:

Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that induce selective protein degradation by linking an E3 ubiquitin ligase enzyme to a target protein. This approach allows scope for targeting "undruggable" proteins, and several PROTACs have reached the stage of clinical candidates. However, the roles of cellular transmembrane transporters in PROTAC uptake and efflux remain underexplored.

View Article and Find Full Text PDF

Major histocompatibility complex class I deficiency results from deleterious biallelic variants in TAP1, TAP2, TAPBP, and B2M genes. Only a few patients with variant-curated TAP1 deficiency (TAP1D) have been reported in the literature and the clinical phenotype has been variable with an emphasis on autoimmune and inflammatory complications. We report TAP1D in a Nepalese girl with a severe clinical phenotype with serious viral infections at a very young age.

View Article and Find Full Text PDF

Cholesterol is vital for nerve processes. Changes in cholesterol homeostasis lead to neurodegeneration and Alzheimer's disease (AD). In recent years, extensive research has confirmed the influential role of adipose tissue mesenchymal stem cells (MSCs) in managing AD.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) identified the ATP binding cassette subfamily A member 7 (ABCA7) gene as increasing risk for Alzheimer's disease (AD). ABC proteins transport various molecules across extra and intra-cellular membranes. ABCA7 is part of the ABC1 subfamily and is expressed in brain cells including neurons, astrocytes, microglia, endothelial cells and pericytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!