A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A YajQ-LysR-like, cyclic di-GMP-dependent system regulating biosynthesis of an antifungal antibiotic in a crop-protecting bacterium, Lysobacter enzymogenes. | LitMetric

A YajQ-LysR-like, cyclic di-GMP-dependent system regulating biosynthesis of an antifungal antibiotic in a crop-protecting bacterium, Lysobacter enzymogenes.

Mol Plant Pathol

College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China.

Published: February 2020

YajQ, a binding protein of the universal bacterial second messenger cyclic di-GMP (c-di-GMP), affects virulence in several bacterial pathogens, including Xanthomonas campestris. In this bacterium, YajQ interacts with the transcription factor LysR. Upon c-di-GMP binding, the whole c-di-GMP-YajQ-LysR complex is found to dissociate from DNA, resulting in virulence gene regulation. Here, we identify a YajQ-LysR-like system in the bacterial biocontrol agent Lysobacter enzymogenes OH11 that secretes an antifungal antibiotic, heat-stable antifungal factor (HSAF) against crop fungal pathogens. We show that the YajQ homologue, CdgL (c-di-GMP receptor interacting with LysR) affects expression of the HSAF biosynthesis operon by interacting with the transcription activator LysR. The CdgL-LysR interaction enhances the apparent affinity of LysR to the promoter region upstream of the HSAF biosynthesis operon, which increases operon expression. Unlike the homologues CdgL (YajQ)-LysR system in X. campestris, we show that c-di-GMP binding to CdgL seems to weaken CdgL-LysR interactions and promote the release of CdgL from the LysR-DNA complex, which leads to decreased expression. Together, this study takes the YajQ-LysR-like system from bacterial pathogens to a crop-protecting bacterium that is able to regulate antifungal HSAF biosynthesis via disassembly of the c-di-GMP receptor-transcription activator complex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6988422PMC
http://dx.doi.org/10.1111/mpp.12890DOI Listing

Publication Analysis

Top Keywords

hsaf biosynthesis
12
antifungal antibiotic
8
crop-protecting bacterium
8
lysobacter enzymogenes
8
bacterial pathogens
8
c-di-gmp binding
8
yajq-lysr-like system
8
system bacterial
8
biosynthesis operon
8
yajq-lysr-like cyclic di-gmp-dependent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!