A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assembly of an atrazine catabolic operon and its introduction to Gram-negative hosts for robust and stable degradation of triazine herbicides. | LitMetric

Assembly of an atrazine catabolic operon and its introduction to Gram-negative hosts for robust and stable degradation of triazine herbicides.

FEMS Microbiol Lett

Department of Biochemistry, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás. CP11340 Mexico City, Mexico.

Published: October 2019

In 1995, Pseudomonas sp. ADP, capable of metabolizing atrazine, was isolated from contaminated soil. Genes responsible for atrazine mineralization were found scattered in the 108.8 kb pADP-1 plasmid carried by this strain, some of them flanked by insertion sequences rendering them unstable. The goal of this work was to construct a transcriptional unit containing the atz operon in an easy to transfer manner, to be introduced and inherited stably by Gram-negative bacteria. atz genes were PCR amplified, joined into an operon and inserted onto the mobilizable plasmid pBAMD1-2. Primers were designed to add efficient transcription and translation signals. Plasmid bearing the atz operon was transferred to different Gram-negative strains by conjugation, which resulted in Tn5 transposase-mediated chromosomal insertion of the atz operon. To test the operon activity, atrazine degradation by transposants was assessed both colorimetrically and by high-performance liquid chromatography (HPLC). Transposants mineralized atrazine more efficiently than wild-type Pseudomonas sp. ADP and did not accumulate cyanuric acid. Atrazine degradation was not repressed by simple nitrogen sources. Genes conferring atrazine-mineralizing capacities were stable and had little or null effect on the fitness of different transposants. Introduction of catabolic operons in a stable fashion could be used to develop bacteria with better degrading capabilities useful in bioremediation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsle/fnz233DOI Listing

Publication Analysis

Top Keywords

atz operon
12
pseudomonas adp
8
atrazine degradation
8
operon
6
atrazine
5
assembly atrazine
4
atrazine catabolic
4
catabolic operon
4
operon introduction
4
introduction gram-negative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!