Most current nanoparticle-based PET tracers are radiolabeled through metal chelators conjugated on the nanoparticle surface. Metal chelation usually requires sophisticated optimization and may impact the physical or chemical properties of nanoparticles, which leads to the changes in their distribution and pharmacokinetics in vivo. A chelator-free radiolabeling approach is thus highly desirable. Here, we report that zinc sulfide (ZnS) quantum dots (QDs) can be rapidly radiolabeled with 68Ga or 64Cu through cation exchange without chelators. The radiolabeling was accomplished in times as short as 5 min at 37 °C in aqueous solution, yielding a high labeling efficiency and radiochemical purity for both isotopes. Surface functionalization with targeting peptides was also readily achieved to enable or enhance the cellular uptake of QDs. In vivo PET imaging showed that 64Cu-labeled QDs had a much higher tumor uptake (7.3% ID g-1) than 64Cu-DOTA in a murine cancer model. Overall, this study presents a QD-based platform to achieve convenient and chelator-free radiolabeling, and improve PET imaging of solid tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr08508dDOI Listing

Publication Analysis

Top Keywords

chelator-free radiolabeling
12
quantum dots
8
pet imaging
8
rapid chelator-free
4
radiolabeling
4
radiolabeling quantum
4
dots vivo
4
vivo imaging
4
imaging current
4
current nanoparticle-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!