The structures of the six perrhenates (AReO4 A = Ag, Na, K, Rb, Cs and Tl) at room temperature have been established using powder neutron diffraction methods. These demonstrate the rigid nature of the ReO4 tetrahedra, with the Re-O distances decreasing very slightly and the O-Re-O bond angles approaching the regular tetrahedron value of 109.5° as the size of the A-type cation increases. Variable temperature synchrotron X-ray diffraction measurements show that RbReO4 undergoes a I41/a to I41/amd transition near 650 K that is associated with a change in the orientation of the ReO4- tetrahedra about the scheelite b-axis associated with a Γ3+ mode. CsReO4 has an orthorhombic pseudo scheelite structure at room temperature with rotation of the ReO4 tetrahedra about the c-axis described by mode M4+ and this undergoes a first order orthorhombic to tetragonal (Pnma to I41/a) transition near 450 K with a transition to the I41/amd structure occurring above this. TlReO4 is a rare example of a crystalline material displaying a re-entrant phase transition; 141/a to P21/c to 141/a. The monoclinic structure can be described as a scheelite superstructure that contains an ordering of tetrahedral rotations around the c-axis and along the b-axis with the irrep Γ3+ and M4+ both present. This behaviour is different to that described recently for the analogous Tc oxide TlTcO4, which highlights the differences in the chemistry of these two systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9dt04021h | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!