AI Article Synopsis

  • Multi-pinhole (MPH) collimators enhance sensitivity and resolution in SPECT imaging compared to traditional collimators, particularly for I-123 imaging.
  • MPH collimators have improved stopping power for higher-energy gamma photons, which are problematic for low-energy parallel-hole collimators, leading to significant downscatter.
  • Experiments and simulations demonstrate that MPH collimators outperform traditional methods in terms of primary counts, penetration, and scatter, suggesting they can produce higher quality imaging with reduced acquisition time.

Article Abstract

Multi-pinhole (MPH) collimators are known to provide better trade-off between sensitivity and resolution for preclinical, as well as for smaller regions in clinical SPECT imaging compared to conventional collimators. In addition to this geometric advantage, MPH plates typically offer better stopping power for penetration than the conventional collimators, which is especially relevant for I-123 imaging. The I-123 emits a series of high-energy (>300 keV, ~2.5% abundance) gamma photons in addition to the primary emission (159 keV, 83% abundance). Despite their low abundance, high-energy photons penetrate through a low-energy parallel-hole (LEHR) collimator much more readily than the 159 keV photons, resulting in large downscatter in the photopeak window. In this work, we investigate the primary, scatter, and penetration characteristics of a single pinhole collimator that is commonly used for I-123 thyroid imaging and our two MPH collimators designed for I-123 DaTscan imaging for Parkinson's Disease, in comparison to three different parallel-hole collimators through a series of experiments and Monte Carlo simulations. The simulations of a point source and a digital human phantom with DaTscan activity distribution showed that our MPH collimators provide superior count performance in terms of high primary counts, low penetration, and low scatter counts compared to the parallel-hole and single pinhole collimators. For example, total scatter, multiple scatter, and collimator penetration events for the LEHR were 2.5, 7.6 and 14 times more than that of MPH within the 15% photopeak window. The total scatter fraction for LEHR was 56% where the largest contribution came from the high-energy scatter from the back compartments (31%). For the same energy window, the total scatter for MPH was 21% with only 1% scatter from the back compartments. We therefore anticipate that using MPH collimators, higher quality reconstructions can be obtained in a substantially shorter acquisition time for I-123 DaTscan and thyroid imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507420PMC
http://dx.doi.org/10.1088/1361-6560/ab58feDOI Listing

Publication Analysis

Top Keywords

mph collimators
16
total scatter
12
collimators
9
primary scatter
8
scatter penetration
8
pinhole collimators
8
collimators provide
8
conventional collimators
8
photopeak window
8
scatter
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!