. Carbapenems are often described as the most effective weapon against infections caused by multidrug-resistant bacteria especially those belonging to the group of non-fermenting bacteria such as . The main mechanisms leading to resistance are the hyperexpression of certain efflux pumps belonging to the resisto-nodular division and the lower expression of the transmembrane porin OprD, sometimes in combination with excessive production of the intrinsic AmpC. Carbapenemases are assumed to play a secondary role. The aim of this study was to determine the exact mechanisms of carbapenem resistance in isolates from the largest Bulgarian University hospital 'St. George'- Plovdiv.. A total of 32 clinical isolates collected from different patients' samples resistant to imipenem and/or meropenem were examined via phenotypic and molecular-genetic tests.. No metallo-enzyme production was detected. Three isolates were positive for OXA-50-encoding genes in two of them in combination with other oxacillinases or the gene. For the first time, OXA-50-producing have been reported in Bulgaria. The increased expression or hyperexpression of MexXY-OprM efflux pump was observed as the main mechanism of resistance. In most cases, it was combined with lower expression or lack of OprD with or without MexAB-OprM hyperexpression. No excessive production of AmpC was detected in comparison to the reference ATCC 27853 . strain.. The increased expression or overexpression of MexXY-OprM efflux pumps is the leading cause of carbapenem resistance in our isolates , detected in 94 % of the bacteria investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.001106DOI Listing

Publication Analysis

Top Keywords

efflux pumps
12
clinical isolates
8
intrinsic ampc
8
lower expression
8
excessive production
8
carbapenem resistance
8
resistance isolates
8
increased expression
8
mexxy-oprm efflux
8
isolates
5

Similar Publications

Degradation of plasmid-mediated resistance genes in poultry slaughterhouse wastewater employing a UV/HO process: A metagenomic approach.

Chemosphere

January 2025

Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.

Poultry slaughterhouse effluents are important hotspots for the spread of both antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs), contributing to the antimicrobial resistance (AMR). This study reports a novel investigation to assess the effects of UV/HO treatment on the removal of metaplasmidome-mediated ARGs from poultry slaughterhouse effluents. The effluent samples were subjected at 0.

View Article and Find Full Text PDF

Multidrug-resistant organisms are bacteria that are no longer controlled or killed by specific drugs. One of two methods causes bacteria multidrug resistance (MDR); first, these bacteria may disguise multiple cell genes coding for drug resistance to a single treatment on resistance (R) plasmids. Second, increased expression of genes coding for multidrug efflux pumps, which extrude many drugs, can cause MDR.

View Article and Find Full Text PDF

Defense mechanisms of against antibiotics: a review.

Front Antibiot

September 2024

Department of Agriculture, Food, and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, United States.

is a foodborne pathogenic bacterium that causes salmonellosis worldwide. Also, is considered a serious problem for food safety and public health. Several antimicrobial classes including aminoglycosides, tetracyclines, phenols, and β-Lactams are used to treat infections.

View Article and Find Full Text PDF

Mg-dependent mechanism of environmental versatility in a multidrug efflux pump.

Structure

January 2025

Department of Chemistry, Britannia House, 7 Trinity Street, King's College London, London, SE1 1DB, UK; School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK. Electronic address:

Tripartite resistance nodulation and cell division multidrug efflux pumps span the periplasm and are major drivers of multidrug resistance among gram-negative bacteria. Cations, such as Mg, become concentrated within the periplasm and, in contrast to the cytoplasm, its pH is sensitive to conditions outside the cell. Here, we reveal an interplay between Mg and pH in modulating the structural dynamics of the periplasmic adapter protein, AcrA, and its function within the prototypical AcrAB-TolC multidrug pump from Escherichia coli.

View Article and Find Full Text PDF

is a well-known opportunistic pathogen, responsible for various nosocomial infections. UOL-KIMZ-24 was previously isolated from a clinical specimen, collected from Lahore General Hospital, Lahore (LGH), Pakistan, dated 3rd March, 2022. During the initial screening for antimicrobial susceptibility, the UOL-KIMZ-24 was found a multiple drug resistant (MDR) strain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!