A growing consensus indicates that host metabolism plays a vital role in viral infections. Hepatitis B virus (HBV) infection occurs in hepatocytes with active glucose metabolism and may be regulated by cellular metabolism. We addressed the question whether and how glucose regulates HBV replication in hepatocytes. The low glucose concentration at 5 mM significantly promoted HBV replication via enhanced transcription and autophagy when compared with higher glucose concentrations (10 and 25 mM). At low glucose concentration, AMPK activity was increased and led to ULK1 phosphorylation at Ser 555 and LC3-II accumulation. By contrast, the mTOR pathway was activated by high glucose concentrations, resulting in reduced HBV replication. mTOR inhibition by rapamycin reversed negative effects of high glucose concentrations on HBV replication, suggesting that low glucose concentration promotes HBV replication by stimulating the AMPK/mTOR-ULK1-autophagy axis. Consistently, we found that glucose transporters inhibition using phloretin also enhanced HBV replication via increased AMPK/mTOR-ULK1-induced autophagy. Surprisingly, the glucose analogue 2-deoxy-D-glucose reduced HBV replication through activating the Akt/mTOR signalling pathway also at the low glucose concentrations. Our study reveals that glucose is an important factor for the HBV life cycle by regulating HBV transcription and posttranscriptional steps of HBV replication via cellular autophagy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cmi.13131DOI Listing

Publication Analysis

Top Keywords

hbv replication
32
low glucose
16
glucose concentrations
16
glucose
12
glucose concentration
12
hbv
11
replication
9
akt/mtor signalling
8
hepatitis virus
8
replication cellular
8

Similar Publications

A Cell-penetrating bispecific antibody suppresses hepatitis B virus replication and secretion.

Virus Res

January 2025

Medical Research Center, Yuebei People's Hospital, Shantou University Medical College, 512025, Shaoguan, China; Shenzhen Immuthy Biotech Co., Ltd, 518107, Shenzhen, Guangdong, China. Electronic address:

Hepatitis B virus (HBV) represents one of the major pathogenic factor that leads to chronic liver diseases and the development of hepatocellular carcinoma (HCC). The currently approved anti-HBV drugs cannot eradicate the virus or block the development of HCC. HBV nucleocapsid consists of the hepatitis B core antigen (HBcAg) and the HBV relaxed-circular partially double-stranded DNA (rcDNA), indispensable in virus replication.

View Article and Find Full Text PDF

Background: Hepatitis B (HBV) and Delta (HDV) virus infections pose critical public health challenges, particularly in Romania, where HDV co-infection is underdiagnosed.

Methods: This study investigates the epidemiology, risk factors, and clinical outcomes of HBV/HDV co-infection in vulnerable populations, leveraging data from the LIVE(RO2) program. Conducted between July 2021 and November 2023, the program screened 320,000 individuals across 24 counties, targeting socially disadvantaged groups such as rural residents, the Roma community, and those lacking health insurance.

View Article and Find Full Text PDF

Exploration of the Role of Cyclophilins in Established Hepatitis B and C Infections.

Viruses

December 2024

INSERM U1052, CNRS UMR5286, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon Hepatology Institute (IHU Everest), 69003 Lyon, France.

Cyclophilin (Cyp) inhibitors are of clinical interest in respect to their antiviral activities in the context of many viral infections including chronic hepatitis B and C. Cyps are a group of enzymes with peptidyl-prolyl isomerase activity (PPIase), known to be required for replication of diverse viruses including hepatitis B and C viruses (HBV and HCV). Amongst the Cyp family, the molecular mechanisms underlying the antiviral effects of CypA have been investigated in detail, but potential roles of other Cyps are less well studied in the context of viral hepatitis.

View Article and Find Full Text PDF

From the Cytoplasm into the Nucleus-Hepatitis B Virus Travel and Genome Repair.

Microorganisms

January 2025

Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 41346 Gothenburg, Sweden.

Hepatitis B virus (HBV) is a major global health concern, affecting millions of people worldwide. HBV is part of the hepadnaviridae family and one of the primary causes of acute and chronic liver infections, leading to conditions such as cirrhosis and hepatocellular carcinoma (HCC). Understanding the intracellular transport and genome repair mechanisms of HBV is crucial for developing new drugs, which-in combination with immune modulators-may contribute to potential cures.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) infections remain a significant global health challenge, especially in low- and middle-income countries where access to healthcare services is often limited. This study aimed to assess the prevalence of hepatitis B virus (HBV), hepatitis delta virus (HDV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV) co-infections in a cohort of 426,528 patients tested for HBsAg in Romania between 2018 and 2023. Of the 17,082 HBsAg-positive individuals (4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!