Differentiation potential and functional properties of a CD34‑CD133+ subpopulation of endothelial progenitor cells.

Mol Med Rep

Clinic of Internal Medicine III, Cardiology, Angiology and Intensive Care, University of The Saarland, D‑66421 Homburg/Saar, Germany.

Published: January 2020

Endothelial progenitor cells (EPCs) promote angiogenesis and play an important role in myocardial and vascular repair after ischemia and infarction. EPCs consist of different subpopulations including CD34‑CD133+ EPCs, which are precursors of more mature CD34+CD133+ EPCs and functionally more active in terms of homing and endothelial regeneration. In the present study we analyzed the functional and differentiation abilities of CD34‑CD133+ EPCs. Isolation of EPC populations (CD34+CD133+, CD34‑CD133+) were performed by specific multi‑step magnetic depletion. After specific stimulation a significant higher adhesive and migrative capacity of CD34‑CD133+ cells could be detected compared to CD34+CD133+ cells (P<0.001, respectively). Next to this finding, not only significantly higher rates of proliferation (P<0.005) were detected among CD34‑CD133+ cells, but also a higher potential of cell‑differentiation capacity into other cell types. Next to a significant increase of CD34‑CD133+ EPCs differentiating into a fibroblast cell‑type (P<0.001), an enhancement into a hepatocytic cell‑type (P=0.033) and a neural cell‑type (P=0.016) could be measured in contrast to CD34+CD133+ cells. On the other hand, there was no significant difference in differentiation into a cardiomyocyte cell‑type between these EPC subpopulations (P=0.053). These results demonstrate that EPC subpopulations vary in their functional abilities and, to different degrees, have the capacity to transdifferentiate into unrelated cell‑types such as fibroblasts, hepatocytes, and neurocytes. This indicates that CD34‑CD133+ cells are more pluripotent compared to the CD34+CD133+ EPC subset, which may have important consequences for the therapy of vascular diseases.

Download full-text PDF

Source
http://dx.doi.org/10.3892/mmr.2019.10831DOI Listing

Publication Analysis

Top Keywords

endothelial progenitor
8
progenitor cells
8
cd34‑cd133+ epcs
8
cd34‑cd133+
5
epcs
5
differentiation potential
4
potential functional
4
functional properties
4
properties cd34‑cd133+
4
cd34‑cd133+ subpopulation
4

Similar Publications

Protocol for the generation of HLF+ HOXA+ human hematopoietic progenitor cells from pluripotent stem cells.

STAR Protoc

January 2025

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:

Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.

View Article and Find Full Text PDF

A dual-therapy sirolimus-eluting and CD34+ antibody-coated Combo Stent (DTS) has been developed to enhance endothelization and capture endothelial progenitor cells; however, vessel responses following DTS implantation remain unclear. Therefore, we evaluated early- and mid-term intravascular characteristics of DTS using intravascular imaging modalities. This multicenter, prospective, observational study enrolled 88 patients (95 lesions) who underwent DTS (43 patients, 48 lesions) or sirolimus-eluting Orsiro stent (SES, 45 patients, 47 lesions) implantation.

View Article and Find Full Text PDF

Our group has recently demonstrated that exercise intervention affects the release and function of bone marrow endothelial progenitor cell-derived extracellular vesicles (EVs) in transgenic hypertensive mice. Whether such an exercise regimen can impact circulating EVs (cEVs) remains unknown. In this study, we investigated the influence of exercise on cEV level and function.

View Article and Find Full Text PDF

Expression of fatty acid binding proteins in mesenteric adipose tissue.

Biochem Biophys Res Commun

January 2025

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, USA; Institute on the Biology of Aging and Metabolism, University of Minnesota-Twin Cities, Minneapolis, MN, USA. Electronic address:

Adipose is a complex tissue comprised of adipocytes, immune cells, endothelial and progenitor stem cells. In humans, there are at least nine defined adipose depots, each containing variable numbers of genetically identified adipocyte clusters suggesting remarkable heterogeneity and potential functionality in each depot with respect to lipid metabolism. Although subcutaneous and visceral depots are commonly analyzed for biochemical and molecular functions, the mesenteric depot has been overlooked yet strongly implicated in lipid mediated immune surveillance.

View Article and Find Full Text PDF

Circulating endothelial cells (CECs) and endothelial progenitor cells (EPCs) are promising markers of vascular damage and endothelial regeneration potential. We focused on the detection of CECs and EPCs using flow cytometry with regard to analytical challenges and its suitability for routine testing. As part of a clinical validation, CECs and EPCs were measured in blood samples from 83 subjects with type 1 diabetes (T1DM), evaluating an adjuvant intervention with two different antidiabetic drugs, empagliflozin (N = 28) and semaglutide (N = 29).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!