Current treatment against glioblastoma consists of surgical resection followed by temozolomide, with or without combined radiotherapy. Glioblastoma frequently acquires resistance to chemotherapy and/or radiotherapy. Novel therapeutic approaches are thus required. The inhibition of enhancer of zeste homolog 2 (EZH2; a histone methylase) and histone deacetylases (HDACs) are possible epigenetic treatments. Temozolomide, 3‑deazaneplanocin A (DZ‑Nep; an EZH2 inhibitor) and panobinostat (an HDAC inhibitor) were tested in regular and temozolomide‑resistant glioblastoma cells to confirm whether the compounds could behave in a synergistic, additive or antagonistic manner. A total of six commercial cell lines, two temozolomide‑induced resistant cell lines and two primary cultures derived from glioblastoma samples were used. Cell lines were exposed to single treatments of the drugs in addition to all possible two‑ and three‑drug combinations. Colony formation assays, synergistic assays and reverse transcription‑quantitative PCR analysis of apoptosis‑associated genes were performed. The highest synergistic combination was DZ‑Nep + panobinostat. Triple treatment was also synergistic. Reduced clonogenicity and increased apoptosis were both induced. It was concluded that the therapeutic potential of the combination of these three drugs in glioblastoma was evident and should be further explored.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijo.2019.4905DOI Listing

Publication Analysis

Top Keywords

cell lines
12
glioblastoma cells
8
glioblastoma
6
synergistic
5
synergistic dz‑nep
4
dz‑nep panobinostat
4
panobinostat temozolomide
4
temozolomide reduces
4
reduces clonogenicity
4
clonogenicity induces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!