Evaluation of Carotenoids Protection Against Oxidative Stress in the Animal Model Caenorhabditis elegans.

Methods Mol Biol

Food Biotechnology Department, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.

Published: January 2021

The nematode Caenorhabditis elegans is a versatile and powerful model organism for animal experimental research and, despite being an invertebrate, displays remarkably similar molecular bases and conserved cellular pathways to those of humans. Oxidative stress is an etiological factor that influences numerous diseases, degenerative processes and aging. C. elegans has revealed as an opportune and feasible organism to investigate the antioxidant effects of different bioactives or complex food matrices, and a number of protocols have been developed by using different oxidative stressors. Carotenoids are recognized as quenchers and scavengers of reactive oxygen species, and many of their related health benefits attributed in the diet are tightly linked to their antioxidant properties. In this chapter, we report a simple and rapid assay to evaluate the protection capacity of pure carotenoids or complex carotenoid extracts against oxidative stress in the model system C. elegans. The protocol describes a representative feeding experiment by adding carotenoids to the nematode growth medium and after an incubation period, the C. elegans populations fed with carotenoids are exposed to an acute oxidative stress by using HO as oxidative agent. The protection against oxidative stress is evaluated as the survival rate of the nematodes fed with the carotenoid prior to receiving oxidative treatment compared with the survival rate of control nematode population. In order to confirm the carotenoid intake by the nematodes during the feeding experiment a bioassimilation experiment is also reported.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9952-1_29DOI Listing

Publication Analysis

Top Keywords

oxidative stress
20
oxidative
8
protection oxidative
8
caenorhabditis elegans
8
feeding experiment
8
survival rate
8
stress
5
elegans
5
evaluation carotenoids
4
carotenoids protection
4

Similar Publications

ADAR is highly expressed and correlated with poor prognosis in hepatocellular carcinoma (HCC), yet the role of its constitutive isoform ADARp110 in tumorigenesis remains elusive. We investigated the role of ADARp110 in HCC and underlying mechanisms using clinical samples, a hepatocyte-specific knock-in mouse model, and engineered cell lines. ADARp110 is overexpressed and associated with poor survival in both human and mouse HCC.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality globally, with oxidative stress playing a pivotal role in its progression. Free radicals produced via oxidative stress contribute to lipid peroxidation, leading to subsequent inflammatory responses, which then result in atherosclerosis. Antioxidants inhibit these harmful effects through their reducing ability, thereby preventing oxidative damage.

View Article and Find Full Text PDF

Maternal Gut Inflammation Aggravates Acute Liver Failure Through Facilitating Ferroptosis via Altering Gut Microbial Metabolism in Offspring.

Adv Sci (Weinh)

January 2025

Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.

Microbial transmission from mother to infant is important for offspring microbiome formation and health. However, it is unclear whether maternal gut inflammation (MGI) during lactation influences mother-to-infant microbial transmission and offspring microbiota and disease susceptibility. In this study, it is found that MGI during lactation altered the gut microbiota of suckling pups by shaping the maternal microbiota in the gut and mammary glands.

View Article and Find Full Text PDF

Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.

View Article and Find Full Text PDF

Cancer survivors have an increased risk of developing Type 2 diabetes compared to the general population. Patients treated with cisplatin, a common chemotherapeutic agent, are more likely to develop metabolic syndrome and Type 2 diabetes than age- and sex-matched controls. Surprisingly, the impact of cisplatin on pancreatic islets has not been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!