Assays for Measuring the Role of MIF in NLRP3 Inflammasome Activation.

Methods Mol Biol

Rheumatology Group, Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia.

Published: December 2020

Hallmarks of NLRP3 inflammasome activation include the cleavage and secretion of the mature forms of caspase-1, IL-1β, and IL-18 and aggregation of ASC into "specks." We have previously shown that macrophage migratory inhibitory factor (MIF) directly regulates activation of the NLRP3 inflammasome, inhibiting the release of interleukin (IL)-1α, IL-1β, and IL-18. Here we present protocols for studying activation of the NLRP3 inflammasome in human and mouse macrophages and peripheral blood mononuclear cells (PBMCs). These protocols can also be applied to different cell types, such as fibroblasts, neutrophils, endothelial cells, and epithelial cells, although further optimization may be required for each. We also cover the stimulation of macrophages with established NLRP3 inflammasome activators.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9936-1_14DOI Listing

Publication Analysis

Top Keywords

nlrp3 inflammasome
20
inflammasome activation
8
il-1β il-18
8
activation nlrp3
8
nlrp3
5
inflammasome
5
assays measuring
4
measuring role
4
role mif
4
mif nlrp3
4

Similar Publications

MAP Kinase Signaling at the Crossroads of Inflammasome Activation.

Immunol Rev

January 2025

Department of Internal Medicine and Paediatrics, Ghent University, Ghent, Belgium.

Inflammasomes are crucial mediators of both antimicrobial host defense and inflammatory pathology, requiring stringent regulation at multiple levels. This review explores the pivotal role of mitogen-activated protein kinase (MAPK) signaling in modulating inflammasome activation through various regulatory mechanisms. We detail recent advances in understanding MAPK-mediated regulation of NLRP3 inflammasome priming, licensing and activation, with emphasis on MAPK-induced activator protein-1 (AP-1) signaling in NLRP3 priming, ERK1 and JNK in NLRP3 licensing, and TAK1 in connecting death receptor signaling to NLRP3 inflammasome activation.

View Article and Find Full Text PDF

The opioid epidemic endangers not only public health but also social and economic welfare. Growing clinical evidence indicates that chronic use of prescription opioids may contribute to an elevated risk of ischemic stroke and negatively impact post-stroke recovery. In addition, NLRP3 inflammasome activation has been related to several cerebrovascular diseases, including ischemic stroke.

View Article and Find Full Text PDF

The NLRP3 inflammasome plays a critical role in innate immunity and inflammatory diseases. NIMA-related kinase 7 (NEK7) is essential for inflammasome activation, and its interaction with NLRP3 is enhanced by K efflux. However, the mechanism by which K efflux promotes this interaction remains unknown.

View Article and Find Full Text PDF

Group 3 Innate Lymphoid Cells: A Potential Therapeutic Target for Steroid Resistant Asthma.

Clin Rev Allergy Immunol

December 2024

Division of Allergy and Clinical Immunology, The Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA.

Asthma is a chronic airway inflammatory disease that affects millions globally. Although glucocorticoids are a mainstay of asthma treatment, a subset of patients show resistance to these therapies, resulting in poor disease control and increased morbidity. The complex mechanisms underlying steroid-resistant asthma (SRA) involve Th1 and Th17 lymphocyte activity, neutrophil recruitment, and NLRP3 inflammasome activation.

View Article and Find Full Text PDF

Neohesperidin Improves Depressive-Like Behavior Induced by Chronic Unpredictable Mild Stress in Mice.

Neurochem Res

January 2025

Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.

Depression is a common and complex neuropsychiatric disorder affecting people of all ages worldwide, associated with high rates of relapse and disability. Neohesperidin (NEO) is a dietary flavonoid with applications in therapeutics; however, its effects on depressive-like behavior remain unknown. Here, we evaluated the effects of NEO on depressive-like behavior induced by chronic and unpredictable mild stress (CUMS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!