Biological Effects of Magnetic Resonance Imaging on Testis Histology and Seminiferous Tubules Morphometry.

Oman Med J

Hepatitis Research Center and Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.

Published: November 2019

AI Article Synopsis

  • The study aimed to examine how MRI waves affect testicular health and sperm production in mice, focusing on the histology of seminiferous tubules.
  • Exposure to MRI for 36 minutes weekly over three weeks resulted in a slight decrease in testicular weight and some signs of reduced spermatogenesis, indicated by a lower Johnson's score compared to control groups.
  • While the long-term effects demonstrated harm to male fertility parameters, the study suggests that some of these adverse effects may be reversible over time.

Article Abstract

Objectives: Spermatogenesis is a regular and lengthy process in which the function of testicular cells may potentially be influenced by several extrinsic and intrinsic stressors, including environmental factors such as magnetic resonance imaging (MRI) waves and radiation. Our study aimed to investigate the effects of MRI waves and fields on the testicular histology and morphometry of seminiferous tubules in mice.

Methods: The experiment was conducted on 40 adult Naval Medical Research Institute mice. The control group was located in the center of the MRI bore while it was turned off, while the exposed group was exposed to the active scanner for 36 minutes once a week for three weeks. Our study included four groups: group I (control group at one hour after last exposure), group II (experimental group at one hour after last exposure), group III (control group at 35 days after last virtual exposure), and group IV (experimental group at 35 days after last exposure). We then assessed the tube and lumen diameters, as well as epithelium thickness of the seminiferous tubules.

Results: Our data showed that MRI waves partially reduced testicular weight one hour after the last exposure (group II) compared to group I ( 0.240). On the other hand, in group II the Johnson's score (score 10, complete spermatogenesis and perfect tubules) was 87.5% which was slightly less than recorded in groups I, III, and IV (91.4%, 92.2%, and 90.5%, respectively). Furthermore, the MRI in group II revealed induces vacuolization in the epithelium, arrest in primary spermatocytes in the pachytene stage as well as disruption in the testicular parenchyma.

Conclusions: Long-term exposure to MRI waves has deleterious effects on the male reproductive system, fertility parameters, and the quantity of germ cells in the seminiferous tubules with the exception of the number of round spermatid cells and epithelial thickness. All these effects were reversible after a new period of spermatogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6851065PMC
http://dx.doi.org/10.5001/omj.2019.98DOI Listing

Publication Analysis

Top Keywords

mri waves
16
exposure group
16
group
14
seminiferous tubules
12
control group
12
hour exposure
12
magnetic resonance
8
resonance imaging
8
group hour
8
group experimental
8

Similar Publications

The complex dynamics of terahertz (THz) wave scattering by subwavelength-scale structures remain largely unexplored. This article examines the spectral scattering characteristics of subwavelength-sized spherical particles probed by tightly focused THz waves through numerical simulations and experimental techniques. The simulations reveal that the scattering intensity for lower Mie resonance modes (magnetic dipole and electric dipole modes) remains largely unaffected when THz waves are focused down to 0.

View Article and Find Full Text PDF

Background: Prior studies suggest that childhood maltreatment is associated with altered hippocampal volume. However, longitudinal studies are currently scarce, making it difficult to determine how alterations in hippocampal volume evolve over time. The current study examined the relationship between childhood maltreatment and hippocampal volumetric development across childhood and adolescence in a community sample.

View Article and Find Full Text PDF

The elucidation of the functional neuroanatomy of human fear, or threat, extinction has started in the 2000s by a series of enthusiastically greeted functional magnetic resonance imaging (fMRI) studies that were able to translate findings from rodent research about an involvement of the ventromedial prefrontal cortex (vmPFC) and the hippocampus in fear extinction into human models. Enthusiasm has been painfully dampened by a meta-analysis of human fMRI studies by Fullana and colleagues in 2018 who showed that activation in these areas is inconsistent, sending shock waves through the extinction research community. The present review guides readers from the field (as well as non-specialist readers desiring safe knowledge about human extinction mechanisms) during a series of exposures with corrective information.

View Article and Find Full Text PDF

A fine-grained understanding of dynamics in cortical networks is crucial to unpacking brain function. Resting-state functional magnetic resonance imaging (fMRI) gives rise to time series recordings of the activity of different brain regions, which are aperiodic and lack a base frequency. Cyclicity analysis, a novel technique robust under time reparametrizations, is effective in recovering the temporal ordering of such time series, collectively considered components of a multidimensional trajectory.

View Article and Find Full Text PDF

Introduction: Aluminum phosphide is a cheap and commonly used rodenticide that is also an effective solid fumigant and frequently used for grain preservation. The pill contains around 44% inert elements (ammonium carbonate) to avoid disintegration of the tablet, while the rest (about 56%) is aluminum phosphide. Because it is freely available on the market, it is one of the commonly used agents for self-poisoning in different parts of the developing world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!