The reduced-tillage (Rt) has been proposed as a strategy to improve soil organic carbon and soil total nitrogen pools. However, little is known of the role of the reduced-tillage compared with the organic (Org) and conventional (Con) management in the Songnen Plain of China. We studied the 4 yr effect of three management strategies (Con, Org and Rt management) on labile soil organic carbon (C) and nitrogen (N) pools, including variation in mineralizable carbon and nitrogen, microbial biomass carbon and nitrogen, dissolved organic carbon and nitrogen in the rotation of alfalfa-corn established in 2009. Soil characteristics including soil organic carbon (SOC), soil total nitrogen (STN), dissolved organic carbon (DOC), dissolved organic nitrogen (DON), microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN) were quantified in samples collected during the 9 yr rotation of 5yr-alfalfa (Medicago sativa L.) followed by 4 yr corn (Zea mays L.). The mineralizable C was increased in the four years, and although not statistically significant, 12% higher in the fourth year under reduced-tillage than conventional management (268 kg ha). Soil organic C was increased by 30% under reduced-tillage compared to conventional management (15.5 Mg ha). Three management strategies showed similar labile N pools in the Con and Org management, but differed in the Rt management. Org management showed significantly lesser mineralizable and inorganic N compared to other strategies, but soil microbial community and comparable crop yield across management strategy in year 4, indicating more efficient N use for organic than other management strategy. In our conditions, reduced-tillage for corn cropping after five years of alfalfa grassland can accumulate labile C and N and improve N utilization to for crop yields in the forage-based rotations. These findings suggest an optimal strategy for using Rt management to enhance soil properties and crop yield in plantation soils and provide a new perspective for understanding the potential role of Rt management in plantation soil.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6863839 | PMC |
http://dx.doi.org/10.1038/s41598-019-53602-7 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125.
The organic carbon content of ancient rocks provides a fundamental record of the biosphere on early Earth. For over 50 y, the high organic content of Archean (>2.5 Ga) mudrocks has puzzled geologists and evolutionary biologists, because high biological primary productivity was unexpected for the nascent biosphere before the rise of O.
View Article and Find Full Text PDFPLoS One
January 2025
Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.
Desertification is a major ecological issue worldwide that results in the destruction of terrestrial ecosystems. Restoration of desertified ecosystems has been carried out in recent decades, but the role of soil microorganisms in this process is poorly understood. Thus, to deconstruct the effects of desertified system restoration on soil microbial communities, we examined the changes in soil characteristics as well as the variations in and drivers of soil microbial diversity and community composition of the Hulun Buir Sandy Land in Northeast China, where restoration activities have been performed for approximately 30 years.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, 12228-900 São Paulo, Brazil.
Polycyclic aromatic hydrocarbons (PAHs) exhibit intriguing characteristics that position them as promising candidates for advancements in organic semiconductor technologies. Notably, tetracene finds substantial utility in Electronics due to its application in organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs). The strategic introduction of an isoelectronic boron-nitrogen (B,N) pair to replace a carbon-carbon pair in acenes introduces changes in the electronic structure, allowing for the controlled modulation of diradical characteristics.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
Complex organic molecules are widespread in different areas of the interstellar medium, including cold areas, such as molecular clouds, where chemical reactions occur in ice. Among the observed molecules are oxygen-bearing organic molecules, which are of high interest given their significant role in astrobiology. Despite the observed rich chemistry, the underlying molecular mechanisms responsible for molecular formation in such cold dilute areas are still not fully understood.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University 6517838683 Hamadan Iran
Here, a straightforward design is employed to synthesize a nanocatalyst based on a carbon-activated modified metal-organic framework using the solvothermal method. This work presents a simple and practical approach for producing the activated carbon derived from the Thymus plant (ACT) modified with amine-functionalized isoreticular metal-organic framework-3 (IRMOF-3) to create an ACT@IRMOF-3 core-shell structure. Successful functionalization was confirmed through N adsorption isotherms, FT-IR, FE-SEM, TEM, EDS, elemental mapping, TGA, and XRD analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!