Silicon photonics waveguide array sensor for selective detection of VOCs at room temperature.

Sci Rep

Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Masdar City Campus, Abu Dhabi, United Arab Emirates.

Published: November 2019

We report on the fabrication and characterization of a volatile organic compound sensor architecture addressing common drawbacks of photonic integrated sensors such as reusability and specificity. The proposed sensor, built on a silicon-on-insulator platform and based on arrayed waveguide interference, has a chemically selective polydimethylsiloxane polymer cladding, which encapsulates the waveguides and provides an expandable and permeable low refractive index material. This cladding material acts as the chemical transducer element, changing its optical properties when in contact with specific volatile organic compounds, whose presence in the context of environmental and public health protection is important to monitor. The sensor operates at room temperature and its selectivity was confirmed by multiple tests with water, toluene, chlorobenzene, and hexane, through which the sturdiness of the sensor was verified. A maximum spectral shift of about 22.8 nm was measured under testing with chlorobenzene, at a central wavelength of 1566.7 nm. In addition, a sensitivity of 234.8 pm/% was obtained for chlorobenzene mass percent concentrations, with a limit of detection of 0.24%. The thermal sensitivity of the sensor has been found to be 0.9 nm/°C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6863817PMC
http://dx.doi.org/10.1038/s41598-019-52264-9DOI Listing

Publication Analysis

Top Keywords

room temperature
8
volatile organic
8
sensor
6
silicon photonics
4
photonics waveguide
4
waveguide array
4
array sensor
4
sensor selective
4
selective detection
4
detection vocs
4

Similar Publications

Simultaneous and Ultraspecific Optical Detection of Multiple miRNAs Using a Liquid Flow-Based Microfluidic Assay.

ACS Appl Mater Interfaces

January 2025

Department of Chemistry, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.

Recent studies have reported that the cause and progression of many diseases are closely related to complex and diverse gene regulation involving multiple microRNAs (miRNAs). However, most existing methods for miRNA detection typically deal with one sample at a time, which limits the achievement of high diagnostic accuracy for diseases associated with multiple gene dysregulations. Herein, we develop a liquid flow-based microfluidic optical assay for the simple and reliable detection of two different target miRNAs simultaneously at room temperature without any enzymatic reactions.

View Article and Find Full Text PDF

The use of active packaging made from biodegradable polymers can contribute to the environment and to the food industry by increasing the shelf life of their products. This study aimed to produce chitosan-based films incorporated with the invertase enzyme (1, 2, 5, 9, and 10 %) as an alternative to avoid sucrose crystallization in the confectionery industry. The optimum activity of the invertase enzyme was observed at 55 °C and pH 5, thus, the films made with the film-forming solution adjusted to pH 5 and dried at 55 °C were compared with those without pH adjustment and dried at room temperature.

View Article and Find Full Text PDF

The development of stable biopharmaceutical formulations, such as monoclonal antibodies, poses a great challenge in the pharmaceutical industry. This study investigated the stabilizing effect of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) in liquid and solid formulations of infliximab during processing and storage. The solid formulation was produced by a scaled-up high-speed electrospinning method, resulting in a product suitable for reconstitution with excellent dissolution properties.

View Article and Find Full Text PDF

Transmission electron microscopy, especially at cryogenic temperature, is largely used for studying biological macromolecular complexes. A main difficulty of TEM imaging of biological samples is the weak amplitude contrasts due to electron diffusion on light elements that compose biological organisms. Achieving high-resolution reconstructions implies therefore the acquisition of a huge number of TEM micrographs followed by a time-consuming image analysis.

View Article and Find Full Text PDF

Survival of viruses in water microcosms.

Sci Total Environ

January 2025

Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna, Valencia 46980, Spain. Electronic address:

Human enteric viruses and emerging viruses such as severe acute respiratory syndrome coronavirus 2, influenza virus and monkeypox virus, are frequently detected in wastewater. Human enteric viruses are highly persistent in water, but there is limited information available for non-enteric viruses. The present study evaluated the stability of hepatitis A virus (HAV), murine norovirus (MNV), influenza A virus H3N2 (IAV H3N2), human coronavirus (HCoV) 229E, and vaccinia virus (VACV) in reference water (RW), effluent wastewater (EW) and drinking water (DW) under refrigeration and room temperature conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!