Aim: The aim of this study was to determine the sealing ability of three different materials mineral trioxide aggregate (MTA) Plus, bone cement, and calcium sulfate with self-etch adhesive (SEA) for the repair of furcal perforation, using dye extraction method.

Materials And Methods: Forty-eight extracted human permanent first and second molars were included and randomly divided into four groups: Group 1, n = 12, negative control, perforation not repaired with any material, Group 2, n = 12, perforation repair material used, MTA Plus, Group 3, n = 12, perforation repair material used, calcium sulfate with SEA, Group 4, n = 12, perforation repair material used, bone cement. The teeth were then coated with two coats of clear nail varnish immersed in methylene blue dye for 24 h, kept in 65% concentrated nitric acid for 3 days. Dye leakage was measured with the dye extraction method using a spectrophotometer at 550 nm.

Results: The negative control showed the highest mean values of dye absorbance (1.45). Bone cement (0.94) came second. Calcium sulfate with SEA (0.58) and MTA Plus (0.32) had no significant difference in their dye absorbance values.

Conclusion: Within the limitations of the study, MTA Plus showed the least microleakage followed by calcium sulfate with SEA which has shown promising results and can be used as an alternative followed by bone cement which showed the highest microleakage.

Download full-text PDF

Source
http://dx.doi.org/10.4103/ijdr.IJDR_788_16DOI Listing

Publication Analysis

Top Keywords

calcium sulfate
20
bone cement
20
perforation repair
16
dye extraction
12
group perforation
12
repair material
12
sulfate sea
12
sealing ability
8
sulfate self-etch
8
self-etch adhesive
8

Similar Publications

Knowledge of plant growth dynamics is essential where constraints such as COVID-19 lockdown restrictions have limited its field establishment. Thus, modeling can be used to predict plant performance where field planting/monitoring cannot be achieved. This study was conducted on the growth dynamics of rubber planted on two acid soils treated with either dolomitic limestone (GML), kieserite or Mg-rich synthetic gypsum (MRSG) to supply the Mg required by rubber seedlings.

View Article and Find Full Text PDF

Aim: This study aims to enhance the scannability of Type III alpha gypsum by incorporating an opacifier and to evaluate its effect on the LSE property.

Setting And Design: In vitro - Comparative study.

Materials And Methods: The base powder of Type III alpha gypsum was divided into three groups: Group I (100 g of base powder), Group II (90 g of base powder with 10 g of TiO2), and Group III (80 g of base powder with 20 g of TiO2).

View Article and Find Full Text PDF

To assess the effectiveness of Biodentine (BD), mineral trioxide aggregate (MTA) and ferric sulfate (FS) as pulpotomy agents in primary molars and evaluate the impact of behavior guidance strategies on pulpotomy success. In this retrospective cross-sectional study, data from 374 cases (50.5 percent male, aged two to 10 years) undergoing 469 pulpotomies at a university pediatric clinic between April 1, 2016 and January 1, 2020 were analyzed.

View Article and Find Full Text PDF

Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.

View Article and Find Full Text PDF

Calcium-organic matter fouling in nanofiltration: Synchrotron-based X-ray fluorescence and absorption near-edge structure spectroscopy for speciation.

Water Res

December 2024

Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:

Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!