Inherited neuromuscular diseases are a heterogeneous group of rare diseases for which the low general awareness leads to frequent misdiagnosis. Advances in DNA sequencing technologies are changing this situation, and it is apparent that these diseases are not as rare as previously thought. Knowledge of the pathogenic variants in patients is helping in research efforts to develop new therapies. Here we present a review of current knowledge in GNE myopathy, a rare neuromuscular disorder caused by mutations in the GNE gene that catalyzes the biosynthesis of sialic acid. The most common initial symptom is foot drop caused by anterior tibialis muscle weakness. There is a progressive wasting of distal skeletal muscles in the lower and upper extremities as well. The quadriceps is relatively spared, which is a distinguishing feature of this disease. The characteristic histological features include autophagic rimmed vacuoles with inclusion bodies. GNE variant analysis of Indian patients has revealed a founder mutation (p.Val727Met) common within the normal Indian populations, especially in the state of Gujurat. We discuss therapeutic options, including metabolite supplementation, pharmacological chaperones, and gene therapy. Initiatives that bring together patients, researchers, and physicians are necessary to improve knowledge and treatment for these rare disorders.

Download full-text PDF

Source
http://dx.doi.org/10.4103/0028-3886.271259DOI Listing

Publication Analysis

Top Keywords

inherited neuromuscular
8
neuromuscular disorder
8
gne myopathy
8
gne
4
disorder gne
4
myopathy patient
4
patient care
4
care inherited
4
neuromuscular diseases
4
diseases heterogeneous
4

Similar Publications

Tail Anchored protein insertion mediated by CAML and TRC40 links to neuromuscular function in mice.

PLoS Genet

January 2025

Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 1st St. SW, Rochester, Minnesota 55905, United States of America.

Motor neuron diseases, such as amyotrophic lateral sclerosis (ALS) and progressive bulbar palsy, involve loss of muscle control resulting from death of motor neurons. Although the exact pathogenesis of these syndromes remains elusive, many are caused by genetically inherited mutations. Thus, it is valuable to identify additional genes that can impact motor neuron survival and function.

View Article and Find Full Text PDF

Pathogenic variants in HMGCR were recently linked to a limb-girdle muscular dystrophy (LGMD) phenotype. The protein product HMG CoA reductase (HMGCR) catalyzes a key component of the cholesterol synthesis pathway. The two other muscle diseases associated with HMGCR, statin-associated myopathy (SAM) and autoimmune anti-HMGCR myopathy, are not inherited in a Mendelian pattern.

View Article and Find Full Text PDF

Mutations in connexin 32 (Cx32) are a common cause of Charcot-Marie-Tooth 1X (CMT1X) disease, an inherited peripheral neuropathy characterized by progressive neuromuscular weakness and demyelination. There are no approved pharmacologic therapies for CMT1X, and identifying new treatments that slow the onset and severity of neuromuscular decline may aid disease management. Cemdomespib is an orally bioavailable small molecule that improved demyelination and neuromuscular junction (NMJ) morphology in mice lacking Cx32 expression.

View Article and Find Full Text PDF

-Related Muscular Dystrophies, LGMD, and TMD, in an Estonian Family Caused by the Finnish Founder Variant.

Neurol Genet

December 2024

From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland.

Background And Objectives: Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the gene-the Finnish founder variant (FINmaj).

View Article and Find Full Text PDF

Objectives: To provide comprehensive information on the burden of myasthenia gravis (MG) in Italy, including the unmet needs of patients and several other aspects related to the disease, based on skilled viewpoints of MG experts.

Design: Iterative analysis conducted in accordance with the best practices of the Delphi method, including anonymity, controlled feedback, and statistical stability of consensus.

Setting And Participants: 24 clinicians, 18 public health experts and 4 patient associations experts completed all the Delphi iterations between 18 April and 3 July 2023, for a total of 46 participants from several Italian Regions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!