The central nucleus of the amygdala plays a significant role in alcohol use and other affective disorders; however, the genetically-defined neuronal subtypes and projections that govern these behaviors are not well known. Here we show that neurotensin neurons in the central nucleus of the amygdala of male mice are activated by ethanol consumption and that genetic ablation of these neurons decreases ethanol consumption and preference in non-ethanol-dependent animals. This ablation did not impact preference for sucrose, saccharin, or quinine. We found that the most robust projection of the central amygdala neurotensin neurons was to the parabrachial nucleus, a brain region known to be important in feeding behaviors, conditioned taste aversion, and alarm. Optogenetic stimulation of projections from these neurons to the parabrachial nucleus is reinforcing, and increases ethanol drinking as well as consumption of sucrose and saccharin solutions. These data suggest that this central amygdala to parabrachial nucleus projection influences the expression of reward-related phenotypes and is a novel circuit promoting consumption of ethanol and palatable fluids. Alcohol use disorder (AUD) is a major health burden worldwide. Although ethanol consumption is required for the development of AUD, much remains unknown regarding the underlying neural circuits that govern initial ethanol intake. Here we show that ablation of a population of neurotensin-expressing neurons in the central amygdala decreases intake of and preference for ethanol in non-dependent animals, whereas the projection of these neurons to the parabrachial nucleus promotes consumption of ethanol as well as other palatable fluids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961987 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.1466-19.2019 | DOI Listing |
PLoS One
January 2025
Department of Medical Psychology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: Post-traumatic Stress Disorder (PTSD), Major Depressive Disorder (MDD), and Adjustment Disorder (AdjD) are highly prevalent among military personnel, often presenting diagnostic challenges due to overlapping symptoms and reliance on self-reporting. The amygdala, particularly the basolateral complex involved in fear-related memory formation and extinction recall, plays a crucial role in emotional processing. Abnormalities in these amygdala nuclei are implicated in PTSD and may distinguish it from other disorders like MDD and AdjD, where these mechanisms are less central.
View Article and Find Full Text PDFJ Neurosci Res
January 2025
Department of Psychology, University of Regensburg, Regensburg, Germany.
Anxiety and depression disorders show high prevalence rates, and stress is a significant risk factor for both. However, studies investigating the interplay between anxiety, depression, and stress regulation in the brain are scarce. The present manuscript included 124 law students from the LawSTRESS project.
View Article and Find Full Text PDFWorld J Biol Psychiatry
January 2025
Department of Psychology, The University of Alabama at Birmingham, Birmingham, AL, USA.
Objective: Facial emotion recognition is central to successful social interaction. People with autism spectrum disorder (ASD) have difficulties in this area. However, neuroimaging evidence on facial emotion processing in ASD has been diverse.
View Article and Find Full Text PDFSci Adv
January 2025
International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan.
The formation of new social interactions is vital for social animals, but the underlying neural mechanisms remain poorly understood. We identified CeA neurons, a population in central amygdala expressing neuropeptide B/W receptor-1 (NPBWR1), that play a critical role in these interactions. CeA neurons were activated during encounters with unfamiliar, but not with familiar, mice.
View Article and Find Full Text PDFPsychol Med
January 2025
Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
Background: Psychostimulants and nonstimulants have partially overlapping pharmacological targets on attention-deficit/hyperactivity disorder (ADHD), but whether their neuroimaging underpinnings differ is elusive. We aimed to identify overlapping and medication-specific brain functional mechanisms of psychostimulants and nonstimulants on ADHD.
Methods: After a systematic literature search and database construction, the imputed maps of separate and pooled neuropharmacological mechanisms were meta-analyzed by Seed-based Mapping toolbox, followed by large-scale network analysis to uncover potential coactivation patterns and meta-regression analysis to examine the modulatory effects of age and sex.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!