Microplastics and nanoplastics are emerging pollutants of global concern. However, the understanding of their ecological effects on terrestrial plants is still limited. We conducted the systematic research to reveal the impact of polystyrene nanoplastics (PSNPs) (0.01-10 mg/L) on seed germination and seedling growth of wheat (Triticum aestivum L.). The results showed that PSNPs had no discernible effect on seed germination rate whereas significantly (p < 0.01) increased root elongation by 88.6 %-122.6 % when compared with the control. Similarly, remarkable increases in carbon, nitrogen contents, and plant biomass were also observed after exposure to PSNPs. Moreover, PSNPs could reduce the shoot to root biomass ratio (S:R ratio) of wheat seedlings. Furthermore, the imagings of a 3D laser confocal scanning microscopy (LCSM) and scanning electron microscopy (SEM) indicated that PSNPs were taken up and subsequently down-top transported to shoot. The absorption and accumulation of four micronutrients (Fe, Mn, Cu and Zn) in wheat were generally reduced in varying degrees. Notably, metabolomics analysis revealed that all PSNPs treatments altered the leaf metabolic profiles mainly by regulating energy metabolisms and amino acid metabolisms. These findings are expected to provide new insights into the effects of PSNPs on crop plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2019.121620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!