Tendon's hierarchical structure allows for load transfer between its fibrillar elements at multiple length scales. Tendon microstructure is particularly important, because it includes the cells and their surrounding collagen fibrils, where mechanical interactions can have potentially important physiological and pathological contributions. However, the three-dimensional (3D) microstructure and the mechanisms of load transfer in that length scale are not known. It has been postulated that interfibrillar matrix shear or direct load transfer via the fusion/branching of small fibrils are responsible for load transfer, but the significance of these mechanisms is still unclear. Alternatively, the helical fibrils that occur at the microstructural scale in tendon may also mediate load transfer; however, these structures are not well studied due to the lack of a three-dimensional visualization of tendon microstructure. In this study, we used serial block-face scanning electron microscopy to investigate the 3D microstructure of fibrils in rat tail tendon. We found that tendon fibrils have a complex architecture with many helically wrapped fibrils. We studied the mechanical implications of these helical structures using finite-element modelling and found that frictional contact between helical fibrils can induce load transfer even in the absence of matrix bonding or fibril fusion/branching. This study is significant in that it provides a three-dimensional view of the tendon microstructure and suggests friction between helically wrapped fibrils as a mechanism for load transfer, which is an important aspect of tendon biomechanics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893486 | PMC |
http://dx.doi.org/10.1098/rsif.2019.0547 | DOI Listing |
Front Physiol
January 2025
Department of Physical Therapy, Louisiana State University Health Sciences Center- New Orleans, New Orleans, LA, United States.
Introduction: The purpose of this study was to investigate the relationships between a Power Leg Press test (PLP) with walking capacity and self-reported performance and participation in individuals with Cerebral Palsy (CP), and to compare the strength of the associations between two power tests (PLP and isokinetic (IsoK)) with walking capacity.
Methods: Ambulatory individuals with CP (n = 33; age 17.89 ± 7.
Wilderness Environ Med
January 2025
Department of Emergency Medicine, Denver Health Hospital, Denver, CO.
In this case report we describe evaluating a patient for a traumatic knee arthrotomy using ultrasound in a resource-limited medical clinic at the base of a ski area. A 23-y-old female presented with a laceration superior to the patella of the left leg. On examination, the wound tracked deep, and providers had concern for traumatic arthrotomy.
View Article and Find Full Text PDFJ Food Sci
January 2025
Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA.
We evaluated the antimicrobial performance of sodium hypochlorite (NaOCl) and peracetic acid (PAA) during washing of baby spinach in water of varying levels of organic load, as measured by its chemical oxygen demand (COD). Escherichia coli TVS353 was spot inoculated onto one unwashed leaf. Sanitizers were added into water with preadjusted COD (300 or 2500 ppm) to achieve concentrations from 20 to 80 ppm.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, H4P 2R2, Quebec, Canada. Electronic address:
Shake flasks are a foundational tool in early process development by allowing high throughput exploration of the design space. However, lack of online data at this scale can hamper rapid decision making. Oxygen transfer rate (OTR) monitoring has been readily applied as an online process characterization tool at the benchtop bioreactor scale.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
January 2025
Department of Engineering and Geology, University "G. D'Annunzio" of Chieti-Pescara, Viale Pindaro, Pescara, 65127, Italy. Electronic address:
This study numerically investigates the impact of different loading modes on the biomechanical response of an osseointegrated dental implant. While finite element modeling is commonly employed to investigate the mechanical behavior of dental implants, several models lack physiological accuracy in their loading conditions, omitting occlusal contact points that influence stress distribution in periimplant bone. Using 3D finite element modeling and analysis, stress distributions at the bone-implant interface are evaluated under both physiological loading, incorporating natural occlusal contact points, and non-physiological loading conditions, with a focus on load transmission mechanisms and the potential risk of bone overloading.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!