The giant muscle protein, titin, is the third most abundant protein in muscle (after myosin and actin). It was shown previously that smooth muscle titin (SMT) with a molecular mass of 500 kDa can form in vitro amorphous amyloid aggregates in two conditions: in solution of low ionic strength (0.15 M Glycine-KOH, pH 7.0) (SMT(Gly) aggregates) and in solution with ionic strength in the physiological range (0.2 M KCl, 20 mM imidazole, pH 7.2-7.4) (SMT(KCl) aggregates). Such aggregation in vivo, which may play a pathological or functional role, is not excluded. In view of the fact that some pathological amyloids can activate the classical and alternative pathways of complement system, we investigated the binding of complement component C1q and C3b to smooth muscle titin amyloid aggregates. The binding of С1q and C3b to SMT aggregates was not observed with ELISA assay. Since SMT aggregates do not activate the complement system, they are hardly implicated in the inflammatory process caused by muscle damage in amyloidoses. SMT: smooth muscle titin; SMT(KCl) aggregates: SMT aggregates in solution containing 0.2 M KCl, 10 mM imidazole, pH 7.0; SMT(Gly) aggregates: SMT aggregates in solution containing 0.15 M glycine-KOH, pH 7.2-7.4; MAC: membrane attack complex; DLS: dynamic light scattering; NHS: Normal Human Serum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15321819.2019.1694943 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!