Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The global problem of antibiotic resistance in bacteria is quickly developing in most antibiotics used in hospitals and livestock. Recently, the infections with multi-drug resistant (MDR) bacteria become a major cause of death worldwide. Current antibiotics are not very effective in treating MDR Salmonella infections, which have become a public health threat. Therefore, novel approaches are needed to rapidly detect and effectively control antibiotic-resistant pathogens. Bacteriophages (phages) have seen renewed attention for satisfying those requirements due to their host-specific properties. Therefore, this review aims to discuss the possibility of using phages as a detection tool for recognizing bacterial cell surface receptors and an alternative approach for controlling antibiotic-resistant pathogens in food systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920764 | PMC |
http://dx.doi.org/10.3390/microorganisms7110570 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!