Biodegradable polyesters gain significant attention because of their wide potential biomedical applications. The ring-opening polymerization method is widely used to obtain such polymers, due to high yields and advantageous properties of the obtained material. The preparation of new, effective, and bio-safe catalytic systems for the synthesis of biomedical polymers is one of the main directions of the research in modern medical chemistry. The new diethylzinc/propyl gallate catalytic system was first used in the copolymerization of ε-caprolactone and rac-lactide. In this paper, the activity of the new zinc-based catalytic system in the copolymerization of cyclic esters depending on the reaction conditions was described. The microstructure analysis of the obtained copolyesters and their toxicity studies were performed. Resulted copolyesters were characterized by low toxicity, moderate dispersity (1.19-1.71), varying randomness degree (0.18-0.83), and average molar mass (5300-9800 Da).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891526 | PMC |
http://dx.doi.org/10.3390/molecules24224168 | DOI Listing |
Sci Rep
December 2024
Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, India.
The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.
View Article and Find Full Text PDFSci Rep
December 2024
Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
Glycerol, a by-product of biodiesel production, could be converted into various value-added products. This work focuses on its dehydrogenation to dihydroxyacetone (DHA), which is mainly used in the cosmetics industry. While several methods have been employed for DHA production, some necessitate catalysts and involve harsh reaction conditions as well as long reaction times.
View Article and Find Full Text PDFBiotechnol Adv
December 2024
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China. Electronic address:
The efficient conversion of xylose is a short board of cask effect to lignocellulosic biorefining, by markedly affecting the total economic and environmental benefits. Based on a comprehensive analysis of the current commercial status of traditional xylose utilization and industrial technology development, this review outlines new technological avenues for the efficient utilization of xylose from lignocellulosic biomass, focusing on super prebiotic xylo-oligosaccharides and multifunctional platform compound xylonic acid. Firstly, the traditional products that can be derived from lignocellulosic xylose, including xylitol (447.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea. Electronic address:
Meticulous and bespoke fabrication of structural materials with simple yet innovative outlines along with on-demand availability is the imperative aspiration for numerous fields. The alliance between nanotechnology and enzymes has led to the establishment of an inimitable and proficient class of materials. With the advancement in the field of additive manufacturing, the fabrication of some complex biological architects is achievable with similitude to the instinctive microenvironment of the biological tissue.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.
The citrus scent arises from the volatile monoterpene limonene, whose cyclic nature can be viewed as a miniaturized form of the poly-cyclic sterol triterpenoids. In particular, as these rings are all formed from poly-isoprenyl precursors via carbocation cascades. However, the relevant reactions are initiated by distinct mechanisms, either lysis/ionization of an allylic diphosphate ester bond, as in limonene synthases, or protonation of a terminal olefin or epoxide, as in lanosterol synthases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!