Application of Diethylzinc/propyl Gallate Catalytic System for Ring-Opening Copolymerization of -Lactide and ε-Caprolactone.

Molecules

Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw. 1 Banacha St., Warsaw 02-097, Poland.

Published: November 2019

Biodegradable polyesters gain significant attention because of their wide potential biomedical applications. The ring-opening polymerization method is widely used to obtain such polymers, due to high yields and advantageous properties of the obtained material. The preparation of new, effective, and bio-safe catalytic systems for the synthesis of biomedical polymers is one of the main directions of the research in modern medical chemistry. The new diethylzinc/propyl gallate catalytic system was first used in the copolymerization of ε-caprolactone and rac-lactide. In this paper, the activity of the new zinc-based catalytic system in the copolymerization of cyclic esters depending on the reaction conditions was described. The microstructure analysis of the obtained copolyesters and their toxicity studies were performed. Resulted copolyesters were characterized by low toxicity, moderate dispersity (1.19-1.71), varying randomness degree (0.18-0.83), and average molar mass (5300-9800 Da).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891526PMC
http://dx.doi.org/10.3390/molecules24224168DOI Listing

Publication Analysis

Top Keywords

catalytic system
12
diethylzinc/propyl gallate
8
gallate catalytic
8
system copolymerization
8
application diethylzinc/propyl
4
catalytic
4
system ring-opening
4
ring-opening copolymerization
4
copolymerization -lactide
4
-lactide ε-caprolactone
4

Similar Publications

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

Non-catalytic glycerol dehydrogenation to dihydroxyacetone using needle-in-tube dielectric barrier discharge plasma.

Sci Rep

December 2024

Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.

Glycerol, a by-product of biodiesel production, could be converted into various value-added products. This work focuses on its dehydrogenation to dihydroxyacetone (DHA), which is mainly used in the cosmetics industry. While several methods have been employed for DHA production, some necessitate catalysts and involve harsh reaction conditions as well as long reaction times.

View Article and Find Full Text PDF

Advanced technological approaches and market status analysis of xylose bioconversion and utilization: Xylooligosacharides and xylonic acid as emerging products.

Biotechnol Adv

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China. Electronic address:

The efficient conversion of xylose is a short board of cask effect to lignocellulosic biorefining, by markedly affecting the total economic and environmental benefits. Based on a comprehensive analysis of the current commercial status of traditional xylose utilization and industrial technology development, this review outlines new technological avenues for the efficient utilization of xylose from lignocellulosic biomass, focusing on super prebiotic xylo-oligosaccharides and multifunctional platform compound xylonic acid. Firstly, the traditional products that can be derived from lignocellulosic xylose, including xylitol (447.

View Article and Find Full Text PDF

An overview of additive manufacturing strategies of enzyme-immobilized nanomaterials with application incatalysis and biomedicine.

Int J Biol Macromol

December 2024

School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea. Electronic address:

Meticulous and bespoke fabrication of structural materials with simple yet innovative outlines along with on-demand availability is the imperative aspiration for numerous fields. The alliance between nanotechnology and enzymes has led to the establishment of an inimitable and proficient class of materials. With the advancement in the field of additive manufacturing, the fabrication of some complex biological architects is achievable with similitude to the instinctive microenvironment of the biological tissue.

View Article and Find Full Text PDF

Between scents and sterols: Cyclization of labdane-related diterpenes as model systems for enzymatic control of carbocation cascades.

J Biol Chem

December 2024

Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50011, USA.

The citrus scent arises from the volatile monoterpene limonene, whose cyclic nature can be viewed as a miniaturized form of the poly-cyclic sterol triterpenoids. In particular, as these rings are all formed from poly-isoprenyl precursors via carbocation cascades. However, the relevant reactions are initiated by distinct mechanisms, either lysis/ionization of an allylic diphosphate ester bond, as in limonene synthases, or protonation of a terminal olefin or epoxide, as in lanosterol synthases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!