SNR-Dependent Environmental Model: Application in Real-Time GNSS Landslide Monitoring.

Sensors (Basel)

National Time Service Center, Chinese Academy of Sciences, Shu Yuan Road, Xi'an 710600, China.

Published: November 2019

The Global Navigation Satellite System (GNSS) is currently one of the important tools for landslide monitoring and early warning. However, the majority of GNSS devices are installed in mountainous areas and a variety of vegetation. These harsh environments lead to defective signals at high elevation angles, rendering real-time successive and reliable positioning results for monitoring difficult. In this study, an environmental model derived from signal-to-noise ratio (SNR) is proposed to enhance the precision and convergence time of positioning in harsh environments. A series of experiments are conducted on weighting and ambiguity-fixed models to evaluate performance. The results indicate that the proposed SNR-dependent environment model could lead to a significant improvement in precision and convergence time; with an obtained root mean squared result on the millimeter level, a convergence time of a few seconds, and utilization which could reach 100%, for continuous and reliable positioning results. These results indicate that the proposed SNR-dependent environment model enhances the performance of GNSS monitoring and early warning to provide continuous and reliable positioning results in real-time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7017375PMC
http://dx.doi.org/10.3390/s19225017DOI Listing

Publication Analysis

Top Keywords

reliable positioning
12
convergence time
12
environmental model
8
landslide monitoring
8
monitoring early
8
early warning
8
harsh environments
8
precision convergence
8
indicate proposed
8
proposed snr-dependent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!