Vitamin D Ameliorates Fat Accumulation with AMPK/SIRT1 Activity in C2C12 Skeletal Muscle Cells.

Nutrients

Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.

Published: November 2019

Excessive fat accumulation has been considered as a major contributing factor for muscle mitochondrial dysfunction and its associated metabolic complications. The purpose of present study is to investigate a role of vitamin D in muscle fat accumulation and mitochondrial changes. In differentiated C2C12 muscle cells, palmitic acid (PA) was pretreated, followed by incubation with 1,25-dihyroxyvitamin D (1,25(OH)2D) for 24 h. PA led to a significant increment of triglyceride (TG) levels with increased lipid peroxidation and cellular damage, which were reversed by 1,25(OH)2D. The supplementation of 1,25(OH)2D significantly enhanced PA-decreased mtDNA levels as well as mRNA levels involved in mitochondrial biogenesis such as nuclear respiratory factor 1 (NRF1), peroxisome proliferative activated receptor gamma coactivator-1α (PGC-1α), and mitochondrial transcription factor A (Tfam) in C2C12 myotubes. Additionally, 1,25(OH)2D significantly increased ATP levels and gene expression related to mitochondrial function such as carnitine palmitoyltransferase 1 (CPT1), peroxisome proliferator-activated receptor α (PPARα), very long-chain acyl-CoA dehydrogenase (VLCAD), long-chain acyl-CoA dehydrogenase (LCAD), medium-chain acyl-CoA dehydrogenase (MCAD), uncoupling protein 2 (UCP2), and UCP3 and the vitamin D pathway including 25-dihydroxyvitamin D3 24-hydroxylase (CYP24) and 25-hydroxyvitamin D3 1-alpha-hydroxylase (CYP27) in PA-treated C2C12 myotubes. In addition to significant increment of sirtuin 1 (SIRT1) mRNA expression, increased activation of adenosine monophosphate-activated protein kinase (AMPK) and SIRT1 was found in 1,25(OH)2D-treated C2C12 muscle cells. Thus, we suggest that the observed protective effect of vitamin D on muscle fat accumulation and mitochondrial dysfunction in a positive manner via modulating AMPK/SIRT1 activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6893473PMC
http://dx.doi.org/10.3390/nu11112806DOI Listing

Publication Analysis

Top Keywords

fat accumulation
16
muscle cells
12
acyl-coa dehydrogenase
12
mitochondrial dysfunction
8
vitamin muscle
8
muscle fat
8
accumulation mitochondrial
8
c2c12 muscle
8
c2c12 myotubes
8
long-chain acyl-coa
8

Similar Publications

Mitochondrial SIRT2-mediated CPT2 deacetylation prevents diabetic cardiomyopathy by impeding cardiac fatty acid oxidation.

Int J Biol Sci

January 2025

Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Dysregulated energy metabolism, particularly lipid metabolism disorders, has been identified as a key factor in the development of diabetic cardiomyopathy (DCM). Sirtuin 2 (SIRT2) is a deacetylase involved in the regulation of metabolism and cellular energy homeostasis, yet its role in the progression of DCM remains unclear. We observed significantly reduced SIRT2 expression in DCM model mice.

View Article and Find Full Text PDF

Intestinal TM6SF2 protects against metabolic dysfunction-associated steatohepatitis through the gut-liver axis.

Nat Metab

January 2025

Department of Medicine and Therapeutics, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.

Transmembrane-6 superfamily member 2 (TM6SF2) regulates hepatic fat metabolism and is associated with metabolic dysfunction-associated steatohepatitis (MASH). TM6SF2 genetic variants are associated with steatotic liver disease. The pathogenesis of MASH involves genetic factors and gut microbiota alteration, yet the role of host-microbe interactions in MASH development remains unclear.

View Article and Find Full Text PDF

Background: Diabetes is a primary contributor to diabetic cardiomyopathy (DbCM), which is marked by metabolic imbalances such as elevated blood glucose and lipid levels, leading to significant structural and functional alterations in the myocardium. Elevated free fatty acids (FFAs) and hyperglycemia play critical roles in DbCM development, with FFAs inducing insulin resistance in cardiomyocytes and promoting lipid accumulation, resulting in oxidative stress and fibrosis. Current research suggests that glucagon-like peptide-1 (GLP-1) receptor agonists may effectively mitigate DbCM, although an effective treatment for this condition remains elusive, and the precise mechanisms of this protective effect are not fully understood.

View Article and Find Full Text PDF

Adult growth hormone deficiency (AGHD) is often accompanied with metabolic dysfunction-associated steatotic liver disease (MASLD). Although some studies reported that MASLD is ameliorated by growth hormone replacement therapy (GHRT), the characteristics of AGHD that are associated with an improvement of hepatic steatosis by GHRT remain unknown. We aimed to investigate whether GHRT affects hepatic lipid accumulation as well as biochemical parameters, and investigated the association between these parameters (UMIN000044989).

View Article and Find Full Text PDF

The rising pandemic of obesity has received significant attention. Yet, more safe and effective targeted strategies must be used to mitigate its impact on individual health and the global disease burden. While the health benefits of resistant starch (RS) are well-documented, the role of RT-90 (a phosphate-modified tapioca RS containing 90.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!