Red algae of the genus are known to biosynthesize and secrete an immense variety of secondary metabolites possessing a spectrum of biological activities against bacteria, invertebrates and mammalian cell lines. Following a rigorous cross-species screening process, herein we report the antifouling potential of 25 secondary metabolites derived from species of the genus , as well as the thorough evaluation of the ecotoxicity of selected metabolites against non-target marine arthropods and vertebrate cell lines. A number of these secondary metabolites exhibited potent antifouling activity and performed well in all screening tests. Our results show that perforenol () possesses similar antifouling activity with that already described for bromosphaerol, which is used herein as a benchmark.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6891695 | PMC |
http://dx.doi.org/10.3390/md17110646 | DOI Listing |
Sorbitol is an important primary metabolite that serves as both a carbon source and signal to pathogens. The leaf diseases caused by Alternata alternata are particularly serious in crabapple (Malus micromalus). Here, we found that sorbitol can enhance the resistance of crabapple to A.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77845, USA.
Background: Virus infection and herbivory can alter the expression of stress-responsive genes in plants. This study employed high-throughput transcriptomic and alternative splicing analysis to understand the separate and combined impacts on host gene expression in Arabidopsis thaliana by Myzus persicae (green peach aphid), and turnip mosaic virus (TuMV).
Results: By investigating changes in transcript abundance, the data shows that aphids feeding on virus infected plants intensify the number of differentially expressed stress responsive genes compared to challenge by individual stressors.
Sci Rep
January 2025
World Vegetable Center, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan.
Wild tomato species exhibit natural insect resistance, yet the specific secondary metabolites and underlying mechanisms governing the resistance remain unclear. Moreover, defense expression dynamically adapts to insect herbivory, causing significant metabolic changes and species-specific secondary metabolite accumulation. The present study aims to identify the resistance-related metabolites in wild tomato accessions that influence the defense mechanism against whitefly (Bemisia tabaci Asia II 7) and leafminer (Phthorimaea absoluta).
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Environmental and Biochemical Sciences, James Hutton Institute, Dundee, Scotland, UK.
Profiling of secondary metabolites within Fragaria sp. (strawberry), Rubus sp. (raspberries and blackberries), and Ribes sp.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.
Saponins represent specialized (secondary) metabolites primarily sourced from plants, typically characterized by an aglycone component of triterpenoids or steroids, often referred to as sapogenin, coupled with sugar moieties. Their structural intricacy and diversity, along with their manifold pharmacological properties, have garnered significant interest among researchers. Notwithstanding this interest, the study of saponins has been encumbered by challenges in their isolation, purification, and structural characterization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!