A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Copper-functionalized nanostructured silica-based systems: Study of the antimicrobial applications and ROS generation against gram positive and gram negative bacteria. | LitMetric

Copper-functionalized nanostructured silica-based systems: Study of the antimicrobial applications and ROS generation against gram positive and gram negative bacteria.

J Inorg Biochem

COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Calle Tulipán s/n, E-28933 Móstoles, Madrid, Spain. Electronic address:

Published: February 2020

A series of copper-functionalized SBA-15 (Santa Barbara Amorphous) materials containing the ligands triethoxysilylpropylmaleamic acid (maleamic) or triethoxy-3-(2-imidazolin-1-yl)propylsilane (imidazoline) have been prepared. The nanostructured silica-based systems SBA-maleamic, SBA-imidazoline, SBA-maleamic-Cu and SBA-imidazoline-Cu were characterized by several methods observing that the functionalization took place mainly inside the pores of the mesoporous system. The antimicrobial behaviour of the synthesized materials against Staphylococcus aureus and Escherichia coli was tested observing a very potent activity of the copper-functionalized systems (minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values for SBA-maleamic-Cu of ca. 31.25 μg/mL, which correspond with ca. 1.13 μg/mL of Cu). A study of the oxidative stress promoted by the synthesized materials showed that the SBA-maleamic-Cu and the SBA-imidazoline-Cu were able to increase the reactive oxygen species (ROS) production in S. aureus by 427% and 373%, respectively, while this increase was slightly lower in E. coli (387 and 324%, respectively). Furthermore, an electrochemical study was carried out in order to determine if these materials interact with lysine or alanine to validate a potential antimicrobial mechanism based on the inhibition of the synthesis of the peptidoglycan of the bacterial wall. Finally, these studies were also performed to determine the potential interaction of the copper-containing materials with glutathione in order to assess if they are able to perturb the metabolism of this tripeptide.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2019.110912DOI Listing

Publication Analysis

Top Keywords

nanostructured silica-based
8
silica-based systems
8
sba-maleamic-cu sba-imidazoline-cu
8
synthesized materials
8
materials
5
copper-functionalized nanostructured
4
systems study
4
study antimicrobial
4
antimicrobial applications
4
applications ros
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!