Genetic mutations are the major pathogenic factor of Autism Spectrum Disorder (ASD). In recent years, more and more ASD risk genes have been revealed, among which there are a group of transcriptional regulators. Considering the similarity of the core clinical phenotypes, it is possible that these different factors may regulate the expression levels of certain key targets. Identification of these targets could facilitate the understanding of the etiology and developing of novel diagnostic and therapeutic methods. Therefore, we performed integrated transcriptome analyses of RNA-Seq and microarray data in multiple ASD mouse models and identified a number of common downstream genes in various brain regions, many of which are related to the structure and function of the synapse components or drug addiction. We then established protein-protein interaction networks of the overlapped targets and isolated the hub genes by 11 algorithms based on the topological structure of the networks, including Sdc4, Vegfa, and Cp in the Cortex-Adult subgroup, Gria1 in the Cortex-Juvenile subgroup, and Kdr, S1pr1, Ubc, Grm2, Grin2b, Nrxn1, Pdyn, Grin3a, Itgam, Grin2a, Gabra2, and Camk4 in the Hippocampus-Adult subgroup, many of which have been associated with ASD in previous studies. Finally, we cross compared our results with human brain transcriptional data sets and verified several key candidates, which may play important role in the pathology process of ASD, including SDC4, CP, S1PR1, UBC, PDYN, GRIN2A, GABRA2, and CAMK4. In summary, by integrated bioinformatics analysis, we have identified a series of potentially important molecules for future ASD research. Autism Res 2020, 13: 352-368. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Abnormal transcriptional regulation accounts for a significant portion of Autism Spectrum Disorder. In this study, we performed transcriptome analyses of mouse models to identify common downstream targets of transcriptional regulators involved in ASD. We identified several recurrent target genes that are close related to the common pathological process of ASD, including SDC4, CP, S1PR1, UBC, PDYN, GRM2, NRXN1, GRIN3A, ITGAM, GRIN2A, GABRA2, and CAMK4. These results provide potentially important targets for understanding the molecular mechanism of ASD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/aur.2240 | DOI Listing |
Front Immunol
January 2025
Department of Gynecology, Handan Central Hospital, Handan, China.
Background: Ferroptosis, a recently discovered iron-dependent cell death, is linked to various diseases but its role in endometriosis is still not fully understood.
Methods: In this study, we integrated microarray data of endometriosis from the GEO database and ferroptosis-related genes (FRGs) from the FerrDb database to further investigate the regulation of ferroptosis in endometriosis and its impact on the immune microenvironment. WGCNA identified ferroptosis-related modules, annotated by GO & KEGG.
Front Immunol
January 2025
Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States.
Introduction: The immune compartment within fetal chorionic villi is comprised of fetal Hofbauer cells (HBC) and invading placenta-associated maternal monocytes and macrophages (PAMM). Recent studies have characterized the transcriptional profile of the first trimester (T1) placenta; however, the phenotypic and functional diversity of chorionic villous immune cells at term (T3) remain poorly understood.
Methods: To address this knowledge gap, immune cells from human chorionic villous tissues obtained from full-term, uncomplicated pregnancies were deeply phenotyped using a combination of flow cytometry, single-cell RNA sequencing (scRNA-seq, CITE-seq) and chromatin accessibility profiling (snATAC-seq).
Front Immunol
January 2025
Animal Disease Prevention and Control and Healthy Breeding Engineering Technology Research Centre, Mianyang Normal University, Mianyang, China.
Introduction: Porcine reproductive and respiratory syndrome virus (PRRSV) is a major pathogen that has caused severe economic losses in the swine industry. Screening key host immune-related genetic factors in the porcine alveolar macrophages (PAMs) is critical to improve the anti-virial ability in pigs.
Methods: In this study, an model was set to evaluate the anti-PRRSV effect of tylvalosin tartrates.
Front Immunol
January 2025
Dermatology Hospital, Southern Medical University, Guangzhou, China.
Background: Fibrotic skin disease represents a major global healthcare burden, characterized by fibroblast hyperproliferation and excessive accumulation of extracellular matrix components. The immune cells are postulated to exert a pivotal role in the development of fibrotic skin disease. Single-cell RNA sequencing has been used to explore the composition and functionality of immune cells present in fibrotic skin diseases.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
Background: Patients with pancreatic ductal adenocarcinoma (PDAC) face a highly unfavorable outcome and have a poor response to standard treatments. Immunotherapy, especially therapy based on natural killer (NK) cells, presents a promising avenue for the treatment of PDAC.
Aims: This research endeavor seeks to formulate a predictive tool specifically designed for PDAC based on NK cell-related long non-coding RNA (lncRNA), revealing new molecular subtypes of PDAC to promote personalized and precision treatment.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!