Based on the molecular dynamics software package CovalentMD 2.0, the fastest molecular dynamics simulation for covalent crystalline silicon with bond-order potentials has been implemented on the third highest performance supercomputer "Sunway TaihuLight" in the world (before June 2019), and already obtained 16.0 Pflops (10 floating point operation per second) in double precision for the simulation of crystalline silicon, which is recordly high for rigorous atomistic simulation of covalent materials. The simulations used up to 160,768 64-core processors, totally nearly 10.3 million cores, to simulate more than 137 billion silicon atoms, where the parallel efficiency is over 80% on the whole machine. The running performance on a single processor reached 15.1% of its theoretical peak at highest. The longitudinal dimension of the simulated system is far beyond the range with scale-dependent properties, while the lateral dimension significantly exceeds the experimentally measurable range. Our simulation enables virtual experiments on real-world nanostructured materials and devices for predicting macroscale properties and behaviors from microscale structures directly, bringing about many exciting new possibilities in nanotechnology, information technology, electronics and renewable energies, etc. © 2019 Wiley Periodicals, Inc.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcc.26113 | DOI Listing |
Chem Asian J
January 2025
Kyoto Institute of Technology: Kyoto Kogei Sen'i Daigaku, Faculty of Molecular Chemistry and Engineering, Goshokaido-cho, Matsugasaki, Sakyo-ku, 606-0962, Kyoto, JAPAN.
Heteroarene-fused heteroles have attracted considerable attention owing to their unique electronic and photophysical properties. The bridging element plays a crucial role in determining the electronic characteristics of the resulting π-conjugated molecules. In this study, we synthesized a series of heteroarene-fused benzo[b]arsoles and investigated their structures and photophysical properties.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
OzGrav-ANU, ARC Centre for Gravitational Astrophysics, College of Science, The Australian National University, Canberra ACT2601, Australia.
We present the design and commissioning of a cryogenic low-vibration test facility that measures displacement noise from a gram-scale silicon cantilever at the level of 10-16m/Hz at 1 kHz. This sensitivity is necessary for future tests of thermal noise models on cross sections of silicon suspension samples proposed for future gravitational-wave detectors. A volume of ∼36 l is enclosed by radiation shields cooling an optical test cavity that is suspended from a multi-stage pendulum chain providing isolation from acoustic and environmental noise.
View Article and Find Full Text PDFHere we report a simple self-masking technique for fabricating bioinspired broadband antireflection coatings on both single-crystalline and multicrystalline silicon wafers with the assistance of a polyimide tape. Subwavelength-structured moth-eye nanopillars, which exhibit superior antireflection performance over a broad range of visible and near-IR wavelengths, can be patterned uniformly on the wafer surface by applying a chlorine-based reactive ion etching (RIE) process. The resulting random nanopillars show improved antireflection properties compared with ordered nanopillars templated by colloidal lithography under the same RIE conditions.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Van der Waals (vdWs) materials are promising candidates for hetero-integration with silicon photonics toward miniaturization and integration. VdWs materials like molybdenum telluride and black phosphorus, despite being prominent, exhibit air sensitivity, and their room temperature emissions can be significantly broadened by tens of meV. Here, a self-encapsulation strategy is developed to scalably synthesize robust 2D vdWs ErOCl with sub-meV narrow emissions at the telecom C-band.
View Article and Find Full Text PDFDrug Deliv
December 2025
College of Pharmacy, Xinxiang Medical University, Xinxiang, China.
Silicosis represents a formidable occupational lung pathology precipitated by the pulmonary assimilation of respirable crystalline silica particulates. This condition engenders a cascade of cellular oxidative stress via the activation of bioavailable silica, culminating in the generation of reactive oxygen species (ROS). Such oxidative mechanisms lead to irrevocable pulmonary impairment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!