Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Prostate biopsies are frequently performed to screen for prostate cancer (PCa) with complications such as infections and bleeding. To reduce unnecessary biopsies, here we designed an improved predictive model of MRI-based prostate volume and associated zone-adjusted prostate-specific antigen (PSA) concentrations for diagnosing PCa and risk stratification. Multiparametric MRI administered to 422 consecutive patients before initial transrectal ultrasonography-guided 13-core prostate biopsies from January 2012 to March 2018 at Fujian Medical University Union Hospital. Univariate and multivariate logistic regression analyses and determination of the area under the curve (AUC) of the receiver operating characteristic (ROC) curve was performed to evaluate and integrate the predictors of PCa and high-risk prostate cancer (HR-PCa). The detection rates of PCa was 43.84% (185/422). And the detection rates of HR-PCa was 71.35% (132/185) in PCa patients. Multivariate analysis revealed that prostate volume(PV), PSA density(PSAD), transitional zone volume(TZV), PSA density of the transitional zone(PSADTZ), and MR were independent predictors of PCa and HR-PCa. PSA, peripheral zone volume(PZV) and PSA density of the peripheral zone(PSADPZ) were independent predictors of PCa but not HR-PCa. The AUC of our best predictive model including PSA + PV + PSAD + MR + TZV or PSA + PV + PSAD + MR + PZV was 0.906 for PCa. The AUC of the best predictive model of PV + PSAD + MR + TZV was 0.893 for HR-PCa. In conclusion, our results will likely improve the detection rate of prostate cancer, avoiding unnecessary prostate biopsies, and for evaluating risk stratification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6863612 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218645 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!